Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a+b)(a2+ab+b2)+ab
=1(a2+2ab+b2-ab)+ab
=((a+b)2-ab)+ab
=1-ab+ab
=1
\(a^3+b^3+ab\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)
\(=a^2-ab+b^2+ab\)
\(=a^2+b^2\)
\(=a^2+b^2+2ab-2ab\)
\(=\left(a+b\right)^2-2ab\)
\(=1-2ab\)
Ta có: \(a+b=1\)
\(\Rightarrow\left(a+b\right)^2=1^2\)
\(a^2+2ab+b^2=1\)
Áp dụng BĐT AM-GM ta có:
\(a^2+2ab+b^2\ge2ab+2.\sqrt{a^2b^2}=2ab+2ab=4ab\)
\(\Leftrightarrow1\ge4ab\)
\(\Leftrightarrow\frac{1}{4}\ge ab\)
\(\Rightarrow a^3+b^3+ab=1-2ab\ge1-2.\frac{1}{4}=1-\frac{1}{2}=\frac{1}{2}\)
đpcm
P/S: Nếu bạn chưa học AM-GM thì chứng minh bài toán phụ
\(a^2+b^2\ge2ab\)rồi áp dụng nhé~
\(\frac{1}{ab}+\frac{1}{a^2+b^2}\)
\(=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\)
\(\ge\frac{4}{a^2+2ab+b^2}+\frac{1}{2ab}\)
\(\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{2\cdot\left(\frac{a+b}{2}\right)^2}\)
\(=6\)
Dấu "=" xảy ra tại a=b=1/2
bn thử tham khảo bài này xem: http://olm.vn/hoi-dap/question/446950.html
\(0\le a,b,c\le1\Rightarrow b\ge b^2;c\ge c^3\)
\(\Rightarrow a+b^2+c^3\le a+b+c\)
\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow\left(1-b-a+ab\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow1-\left(a+b+c\right)+ab+bc+ca-abc\ge0\)
\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\le1\)
=> đpcm
Câu hỏi của Mashiro Rima - Toán lớp 8 - Học toán với OnlineMath
áp dụng bất đẳng thức buinhia
\(\left(a+b+c\right)^2\ge\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\)
\(\Leftrightarrow\left(\frac{3}{2}\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\frac{3}{4}\le a^2+b^2+c^2\)
Ta có : \(\left(a^2-\frac{1}{2}\right)^2\ge0\Leftrightarrow a^2-a+\frac{1}{4}\ge0\Leftrightarrow a^2+\frac{1}{4}\ge a\)
Tương tự : \(b^2+\frac{1}{4}\ge b\) và \(c^2+\frac{1}{4}\ge c\)
Cộng vế theo vế ta được : \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\Leftrightarrow a^2+b^2+c^2+\frac{3}{4}\ge\frac{3}{2}\Rightarrow a^2+b^2+c^2\ge\frac{3}{4}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
Mình giải luôn nhé:
\(a^3+b^3+ab\ge\frac{1}{2}\)
<=> \(\left(a+b\right)\left(a^2+b^2-ab\right)+ab\ge\frac{1}{2}\)
<=> \(1\left(a^2+b^2-ab\right)+ab\ge\frac{1}{2}\)
<=> \(a^2+b^2-ab+ab\ge\frac{1}{2}\)
<=> \(a^2+b^2\ge\frac{1}{2}\)
Hình như có gì đó sai sai