Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta\) = (-m)2 - 4(m -1) = m2 - 4m + 4 = (m - 2)2 \(\ge\) 0 với mọi m
=> Phương trình đã cho luôn có 2 nghiệm x1; x2.
theo hệ thức Vi - ét ta có:
x1 + x2 = m (1);
x1x2 = m - 1 (2)
Đề bài cho x1 - 2x2 = 1 (3)
Trừ từng vế của (1) cho (3) => 3.x2 = m - 1 => x2 = \(\frac{m-1}{3}\) => x1 = m - x2 = m - \(\frac{m-1}{3}\) = \(\frac{2m+1}{3}\).
Thay x1 = \(\frac{2m+1}{3}\); x2 = \(\frac{m-1}{3}\) vào (2) ta được : \(\frac{2m+1}{3}\). \(\frac{m-1}{3}\) = m - 1
=> (2m +1)(m-1) = 9(m - 1)
<=> (2m +1)(m-1) - 9(m - 1) = 0
<=> (m - 1).(2m+ 1 - 9) = 0
<=> (m - 1)(2m - 8) = 0 <=> m = 1 hoặc m = 4
Vậy m = 1; m = 4 thoả mãn y/c
b: Thay x=-5 vào pt, ta được:
\(m+25+65=0\)
hay m=-90
Theo đề, ta có: \(x_1+x_2=13\)
nên \(x_2=18\)
c: Thay x=-3 vào pt, ta được:
\(18+3\left(m+4\right)+m=0\)
=>4m+30=0
hay m=-15/2
Theo đề, ta có: \(x_1\cdot x_2=-\dfrac{m}{2}=\dfrac{15}{4}\)
hay \(x_2=-1.25\)
4.
(1) => y=2m-mx thay vào (2) ta được x+m(2m-mx)=m+1
<=> x-m2x=-2m2+m+1
<=> x(1-m)(1+m)=-(m-1)(1+2m)
với m=-1 thì pt vô nghiệm
với m=1 thì pt vô số nghiệm => có nghiệm nguyên => chọn
với m\(\ne\pm\) 1 thì x=\(\frac{-2m-1}{m+1}\)=\(-2+\frac{1}{m+1}\)
=> y=2m-mx=xm-m(-2+\(\frac{1}{m+1}\)) =2m+2m-\(\frac{m}{m+1}\)=4m-1+\(\frac{1}{m+1}\)
để x y nguyên thì \(\frac{1}{m+1}\)nguyên ( do m nguyên)
=> m+1\(\in\)Ư(1)={1;-1}
=> m\(\in\){0;-2} mà m nguyên âm nên m=-2
vậy m=-2 thì ...
P/s hình như 1 2 3 sai đề
để 2 pt có ít nhất một nghiệm chung thì
x^2+2x+m=x^2+mx+2=>m=2