Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: y=x-m (d) và y=-2x+m-1 (d')
Pt hoành độ giao điểm của (d) và (d') là:
x-m=-2x+m-1 <=> x+2x-m-m+1=0 <=> 3x-2m+1=0 (*)
Để (d) và (d') cắt nhau tại 1 điểm trên trục hoành =>y=0 <=> x=m
=> x=m là nghiệm của pt (*). Thay x=m vào pt này, ta được:
3m-2m+1=0 <=> m+1=0 <=> m=-1
Vậy với m=-1 thì 2 đồ thị hàm số trên cắt nhau tại một điểm thuộc trục hoành.
Để hai đồ thị cắt nhau tại 1 điểm trên trục tung thì
m+1=7-m
=>2m=6
=>m=3
=>(d1): y=-5x+4 và (d2): y=4x+4
Tọa độ giao điểm là:
-5x+4=4x+4 và y=4x+4
=>x=0 và y=4
Phương trình hoành độ giao điểm:
`x-m=-2x+m-1`
`<=>3x-2m+1=0`
2 đồ thị cắt nhau tại 1 điểm trên `Ox <=> -2m+1 =0 <=> m=1/2`
ta có: y=x-m (d); y=-2x+m-1 (d')
pt hoành độ của (d) và (d')
x-m=-2x+m-1
⇔x+2x-m-m+1=0
⇔3x-2m+1=0 (1)
để (d) và (d') cắt nhau tại một điểm thuộc trục hoành -->y=0⇔x=m
--->x=m là nghiệm của pt(1)
thay x=m vào pt, ta có:
3m-2m+1=0
⇔m+1=0
⇔m=-1
vậy khi m=-1 thì đồ thị của các hàm số trên cắt nhau tại một điểm thuộc trục hoành
Hai ham số cắt nhau tại một điểm tại trục tung => x=0
=> (d1): y=-5x+m+1= -5.0+m+1 = m+1
(d2): y= 4x+7-m= 4.0+7 - m = 7-m
(d1) cắt (d2) tại 1 điểm trên trục tung: <=> m+1 = 7 - m
<=> m+m= 7 - 1
<=>2m=6
<=>m=3
Vậy: y=4x+7-m=4.0+7-3=4
=> Toạ độ giao điểm: V(0;4)
Điểm nằm trên trục tung thì có hoành độ bằng 0
Phương trình hoành độ giao điểm của hai hàm số:
-5x + m + 1 = 4x + 7 - m (1)
Thay x = 0 vào (1) ta có:
m + 1 = 7 - m
⇔ m + m = 7 - 1
⇔ 2m = 6
⇔ m = 6 : 2
⇔ m = 3
Vậy m = 3 thì hai đồ thị cắt nhau tại một điểm trên trục tung
1. a) Để hs trên là hs bậc nhất khi và chỉ khi a>0 --> 3+2k>0 --> k >\(\frac{-3}{2}\)
b) Vì đths cắt trục tung tại điểm có tung độ = 5 --> x=0, y=5
Thay y=5 và x=0 vào hs và tìm k
2. a) Tự vẽ
b) Hệ số góc k=\(\frac{-a}{b}=\frac{-2}{4}=\frac{-1}{2}\)
c) Phương trình hoành độ giao điểm là:\(2x+4=-x-2\)(tìm x rồi thay x vào 1 trong 2 pt --> tính y) (x=-2; y=0)
3. Vì 3 đg thẳng đồng quy -->d1 giao d2 giao d3 tại 1 điểm (giao kí hiệu là chữ U ngược)
Tính tọa độ giao điểm của d1 và d2 --> x=2;y=1
Điểm (2;1) thuộc d3 --> Thay x=2 và y=1 vào d3 -->m=3
a, Để y là hàm số bậc nhất thì \(m+5\ne0\Leftrightarrow m\ne-5\)
b, Để y là hàm số đồng biến khi \(m+5>0\Leftrightarrow m>-5\)
c, Thay x = 2 ; y = 3 vào hàm số y ta được :
\(2\left(m+5\right)+2m-10=3\)
\(\Leftrightarrow4m=3\Leftrightarrow m=\frac{3}{4}\)
d, Do đồ thị cắt trục tung tại điểm có hoành độ bằng 9 => y = 9 ; x = 0
Thay x = 0 ; y = 9 vào hàm số y ta được :
\(2m-10=9\Leftrightarrow m=\frac{19}{2}\)
e, Do đồ thị đi qua điểm 10 trên trục hoành => x = 10 ; y = 0
Thay x = 10 ; y = 0 vào hàm số y ta được :
\(10m+50+2m-10=0\Leftrightarrow12m=-40\Leftrightarrow m=-\frac{40}{12}=-\frac{10}{3}\)
f, Ta có : y = ( m + 5 )x + 2m - 10 => a = m + 5 ; b = 2m - 10 ( d1 )
y = 2x - 1 => a = 2 ; y = -1 ( d2 )
Để ( d1 ) // ( d2 ) \(\Rightarrow\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}\Leftrightarrow\hept{\begin{cases}m=-3\\2m\ne9\end{cases}\Leftrightarrow}\hept{\begin{cases}m=-3\left(tm\right)\\m\ne\frac{9}{2}\end{cases}}}\)
g, h cái này mình quên rồi, xin lỗi )):
1.
để ............. căt nhau tại 1 điểm trên trục tung thì:
\(\hept{\begin{cases}0\ne2\left(T.m\right)\\2+m=3-m\end{cases}}\)
<=>2m=1
<=>m=1/2