Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y O A z u v x
a) Vì Oy // Az nên ta có:
\(\widehat{xOy}=\widehat{xAz}\left(=35^o\right)\)( hai góc đồng vị )
Hai góc \(\widehat{OAz}\)và \(\widehat{xAz}\)kề bù nên ta có:
\(\widehat{OAz}+\widehat{xAz}=180^o\Rightarrow\widehat{OAz}+35^o=180^o\)
\(\Rightarrow\widehat{OAz}=180^o-35^o=145^o\)
b) Vì Ou là tia phân giác của \(\widehat{xOy}\)
\(\Rightarrow\widehat{xOu}=\widehat{yOu}=\frac{\widehat{xOy}}{2}=\frac{35^o}{2}=17,5^o\)
Mặt khác, vì Av là tia phân giác \(\widehat{xAz}\)
\(\Rightarrow\widehat{xAv}=\widehat{zAv}=\frac{\widehat{xAz}}{2}=\frac{35^o}{2}=17,5^o\)
Như vậy \(\widehat{xOu}=\widehat{xAv}=17,5^o\)
Hai góc \(\widehat{xOu}\)và \(\widehat{xAv}\)bằng nhau và chiếm vị trí đồng vị
=> Ou // Av ( đpcm )
x O z y m n
Om là phân giác góc xOy
=> góc mOy = 1/2 góc xOy
On là phân giác góc yOz
=> góc yOn = 1/2 góc yoz
suy ra: góc mOy + góc yOn = 1/2 (góc xOy + góc yOz)
<=> góc mOn = 1/2.1800 = 900 (do góc xOy và góc yOz kề bù)
Om phân giác xoy => moy=1/2xoy hay xoy=2moy
tương tự => noy=1/2yoz hay yoz=2noy
Lại có:
xoy+yoz=180
=>2moy +2noy=180
=>moy+noy=90 hay mon =90
Ta có : \(\widehat{xOy}+\widehat{yOz}=180^o\) (hai góc kề bù)
Mà : \(\widehat{xOy}-\widehat{yOz}=100^o\) (gt)
Nên : \(\widehat{xOy}+\widehat{yOz}-\left(\widehat{xOy}-\widehat{yOz}\right)=180^o-100^o\)
<=> \(\widehat{xOy}+\widehat{yOz}-\widehat{xOy}+\widehat{yOz}=80^o\)
=> \(2.\widehat{yOz}=80^o\)
=> \(\widehat{yOz}=\frac{80^o}{2}=40^o\)
=> \(\widehat{xOy}=180^o-40^o=140^o\)
1. x O x' y y'
Giải: a) Ta có: \(\widehat{xOy}+\widehat{yOx'}=180^0\) (kề bù)
=> \(\widehat{yOx'}=180^0-\widehat{xOy}=180^0-75^0=105^0\)
Ta lại có: \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)
Mà \(\widehat{xOy}=75^0\) => \(\widehat{x'Oy'}=75^0\)
\(\widehat{yOx'}=\widehat{xOy'}\) (đối đỉnh)
Mà \(\widehat{yOx'}=105^0\) => \(\widehat{xOy'}=105^0\)
1b) Ta có: \(\widehat{xOy}+\widehat{x'Oy}=180^0\) (kề bù)
mà \(\widehat{x'Oy}-\widehat{xOy}=30^0\)
=> \(2.\widehat{x'Oy}=210^0\)
=> \(\widehat{x'Oy}=210^0:2=105^0\) => \(\widehat{x'Oy}=\widehat{xOy'}=105^0\) (đối đỉnh)
=> \(\widehat{xOy}=180^0-105^0=75^0\) => \(\widehat{xOy}=\widehat{x'Oy'}=75^0\) (đối đỉnh)
2. O x y x' y' m m'
Giải: a) Ta có: \(\widehat{xOm}=\widehat{x'Om'}\) (đối đỉnh)
\(\widehat{mOy}=\widehat{m'Oy'}\) (đối đỉnh)
Mà \(\widehat{xOm}=\widehat{mOy}\) (gt)
=> \(\widehat{x'Om'}=\widehat{m'Oy'}\)
Ta lại có: \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)
Mà \(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}.\widehat{xOy}\) (vì Om là tia p/giác)
=> \(\widehat{x'Om'}=\widehat{m'Oy'}=\frac{1}{2}.\widehat{xOy}\)
=> Om' nằm giữa Ox' và Oy'
=> Om' là tia p/giác của góc x'Oy'
b) Tự viết
x O z y t A B C M H K I N
Gọi I là giao điểm của MC và OB; MC giao Ox tại N
Từ điểm I kẻ IH vuông góc với MA tại H; IK vuông góc với tia Ox tại K
Góc ^xOz=1200, phân giác Oy => ^xOy=^yOz=600
Do Ot là phân giác ^xOy => OC là phân giác góc ^NOI. Mà OC vuông góc với NI
=> Tam giác ONI cân tại O
Lại có ^NOI hay ^xOy=600 => Tam giác NOI là tam giác đều
Ta thấy tam giác NOI có 2 đường cao OC và IK => OC=IK (1)
Ta có: IH và KA vuông góc với AM => IM // KA (Quan hệ //, vuông góc)
Tương tự: IK // AH
=> IH=KA; IK=AH (t/c đoạn chắn) (2)
Từ (1) và (2) => OC=AH (*)
Do tam giác NOI đều => ^OIN=600 => ^BIM=600 (Đối đỉnh) (3)
IH//KA (cmt) => IH//ON. Mà ^ONI=600 => ^HIM=600 (4)
(3); (4) => ^BIM=^HIM
=> C/m được \(\Delta\)IBM=\(\Delta\)IHM (Cạnh huyền góc nhọn) => MB=MH
=> MA - MB = MA - MH = AH (**)
Từ (*) và (**) => MA - MB = OC (đpcm).
Chúc bạn học tốt !
=> MA - MB = MA - MH = AH (**)
Từ (*) và (**) => MA - MB = OC (đpcm).