Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Ta có : }\) \(\widehat{AOB}+\widehat{BOC}=180^O\)\(\text{ (hai góc kề bù)}\)
\(\text{Mà }\) \(2\widehat{AOB}=5\widehat{BOC}\)
Nên \(\frac{AOB}{5}=\frac{BOC}{2}=\frac{AOB+BOC}{5+2}=\frac{180}{7}=\left(?\right)\)
TA CÓ GÓC AOB + GÓC BOC = 180 ĐỘ
\(\frac{AOB}{5}=\frac{BOC}{2}=\frac{AOB+BOC=}{5+2}\frac{180}{7}\)
Ta có hình vẽ:
O A D C E B
Đặt : Góc aOc = góc cOb
Ta có: \(\widehat{aOD}=\widehat{dOc}=\widehat{cOe}=\widehat{eOb}=\frac{1}{2}\widehat{aOc}=\frac{1}{2}\widehat{cOb}\)
\(\Rightarrow\widehat{aOc}=\widehat{cOb}=\frac{1}{2}+\frac{1}{2}=\frac{2}{2}=1\)
Vì đầu bài ta đã đặt: Góc aOc = góc cOb. Nên suy ra:
\(\widehat{dOe}=\widehat{aOc}=\widehat{cOb}=\frac{1}{2}+\frac{1}{2}=\frac{2}{2}=1\) (1)
Vì \(\widehat{aOb}=\widehat{aOc}+\widehat{cOb}=1+1=2\) (2)
Thế (1) và (2) vào ta có tỉ số của: \(\frac{\widehat{dOe}}{\widehat{aOb}}=\frac{1}{2}\)
A O B D C E
a, Ta có \(\widehat{AOD}=\widehat{DOC}=\frac{1}{2}\widehat{AOC}\)
\(\widehat{COE}=\widehat{EOB}=\frac{1}{2}\widehat{COB}\)
\(\Rightarrow\widehat{DOC}+\widehat{COE}=\frac{1}{2}\widehat{AOC}+\frac{1}{2}\widehat{COB}\)
\(\Rightarrow\widehat{DOE}=\frac{1}{2}\widehat{AOB}\Rightarrow\widehat{\frac{DOE}{\widehat{AOB}}=\frac{1}{2}}\)
b,\(0< AOB\le180\)
\(\Rightarrow MAX\left(AOB\right)=180^o\)
\(\Rightarrow MAX\left(DOE\right)=\frac{180}{2}=90\)
Vậy GTLN của DOE là 90 độ
P/s: Max la lớn nhất nha
#)Giải :
A O B C M N
Vì OC là tia phân giác của \(\widehat{AOB}\)
\(\Rightarrow\widehat{AOC}=\widehat{BOC}=\frac{\widehat{AOB}}{2}=\frac{144^o}{2}=72^o\)
Ta có :
\(\widehat{AOC}=72^o\Rightarrow\widehat{MOC}=\widehat{NOC}=52^o\)
\(\Rightarrow\)OC là tia phân giác của \(\widehat{MON}\)
b) (P/s : Hình như ý này hơi thừa :v)
c) Vì \(\widehat{AOB}=144^o;\widehat{AOC}=72^o;\widehat{BOC}=72^o\)
\(\Rightarrow\widehat{AOB}>\widehat{AOC}=\widehat{BOC}\)
a, AOC + BOC : 2
b,chứng minh BOE= BOC- AOB :2