K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Để hai đường thẳng này cắt nhau thì \(2m+1< >2\)

=>\(2m\ne1\)

=>\(m\ne\dfrac{1}{2}\)

b: Để hai đường thẳng này song song thì \(\left\{{}\begin{matrix}2m+1=2\\2k-3\ne3k\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m=1\\-k\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{2}\\k\ne-3\end{matrix}\right.\)

c: Để hai đường thẳng này trùng nhau thì \(\left\{{}\begin{matrix}2m+1=2\\2k-3=3k\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m=1\\-k=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{2}\\k=-3\end{matrix}\right.\)

a: Để hai đường trùng nhau thì k-2=6-2k và -2m+5=m-1

=>3k=8 và -3m=-6

=>k=8/3 và m=2

b: Để hai đường song song thì k-2=6-2k và -2m+5<>m-1

=>k=8/3 và m<>2

c: Để hai đường cắt nhau thì k-2<>6-2k

=>k<>8/3

d: Để hai đường cắt nhau trên trục tung thì k-2<>6-2k và -2m+5=m-1

=>m=2 và k<>8/3

e: m=3

=>(d1): y=(k-2)x+2 và (d2): y=(6-2k)x-1

Để hai đường cắt nhau trên trục hoành thì k-2<>6-2k và -2/k-2=1/6-2k

=>k<>8/3 và -12+4k=k-2

=>3k=10 và k<>8/3

=>k=10/3

19 tháng 12 2021

a: Để hai đường thẳng song song thì a-1=3

hay a=4

Bài 2: 

Để hai đường thẳng này trùng nhau thì

\(\left\{{}\begin{matrix}k=5-k\\m-2=4-m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2k=5\\2m=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k=\dfrac{5}{2}\\m=3\end{matrix}\right.\)

b: Để hai đường song song thì \(\left\{{}\begin{matrix}2m+1=2\\2k-3< >3k\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{2}\\k< >3\end{matrix}\right.\)

2 tháng 1 2022

a, để 2 đường thẳng cắt nhau thì a≠a' hay:\(2\ne2m+1\Rightarrow m\ne\dfrac{1}{2}\)

b, để 2 đường thẳng song song thì \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}2=2m+1\\3k\ne2k-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{2}\\k\ne-3\end{matrix}\right.\)

c, để 2 đường thẳng trùng nhau thì \(\left\{{}\begin{matrix}a=a'\\b=b'\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}2=2m+1\\3k=2k-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{2}\\k=-3\end{matrix}\right.\)

22 tháng 12 2023

a: Để hai đường thẳng y=(a-1)x+5 và y=(3-a)x+2 song song với nhau thì \(\left\{{}\begin{matrix}a-1=3-a\\5\ne2\left(đúng\right)\end{matrix}\right.\)

=>a-1=3-a

=>2a=4

=>a=2

b: Để hai đường thẳng y=kx+(m-2) và y=(5-k)x+4-m trùng nhau thì \(\left\{{}\begin{matrix}k=5-k\\m-2=4-m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2k=5\\2m=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k=\dfrac{5}{2}\\m=3\end{matrix}\right.\)

21 tháng 12 2021

a: Để hai đường thẳng song song thì 2m+1=2

hay m=1/2

2 tháng 10 2021

Anser reply image

Lai cho cá vàng đi ạ

 
2 tháng 10 2021

a) Hàm số \(y=2x+3k\) có các hệ số \(a=2,b=3k\)

Hàm số \(y=\left(2m+1\right)x+2k-3\) có các hệ số  \(a'=2m+1,b'=2k-3\)

Hai hàm số đã cho là hàm số bậc nhất nên \(2m+1\ne0\)

                                                                      \(\Leftrightarrow m\ne-\frac{1}{2}\)

Hai đường thẳng song song với nhau khi \(a=a'\) và \(b\ne b'\) tức là:

         \(2=2m+1\) và \(3k\ne2k-3\)

Kết hợp với điều kiện trên ta có:  \(m=\frac{1}{2}.k\ne-3\)

 b) Hai đường thẳng song song:

\(\Leftrightarrow\hept{\begin{cases}2=2m+1\\3k\ne2k-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=\frac{1}{2}\\k\ne-3\end{cases}}\)

c) Hai đường thẳng trùng nhau:

\(\Leftrightarrow\hept{\begin{cases}2=2m+1\\3k=2k-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=\frac{1}{2}\\k=-3\end{cases}}\)