Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sẽ giả sử tổng số đo 3 góc EOM,EON,FOM là 250 độ như đề bài yêu cầu
Cách 1:
Ta có: \(\widehat{EOM}+\widehat{EON}+\widehat{FOM}+\widehat{FON}=360^0\)
=>\(\widehat{FON}+250^0=360^0\)
=>\(\widehat{FON}=110^0\)
\(\widehat{FON}=\widehat{EOM}\)(hai góc đối đỉnh)
mà \(\widehat{FON}=110^0\)
nên \(\widehat{EOM}=110^0\)
\(\widehat{EOM}+\widehat{EON}=180^0\)(hai góc kề bù)
=>\(\widehat{EON}+110^0=180^0\)
=>\(\widehat{EON}=70^0\)
\(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)
mà \(\widehat{EON}=70^0\)
nên \(\widehat{FOM}=70^0\)
Cách 2: \(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)
=>\(\widehat{EON}+\widehat{FOM}=2\cdot\widehat{EON}\)
\(\widehat{EON}+\widehat{FOM}+\widehat{EOM}=250^0\)
=>\(2\cdot\widehat{EON}+\widehat{EOM}=250^0\)(2)
Ta lại có: \(\widehat{EON}+\widehat{EOM}=180^0\)(hai góc kề bù)(1)
nên từ (1),(2) ta sẽ có hệ phương trình:
\(\left\{{}\begin{matrix}2\cdot\widehat{EON}+\widehat{EOM}=250^0\\\widehat{EON}+\widehat{EOM}=180^0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2\cdot\widehat{EON}+\widehat{EOM}-\widehat{EON}-\widehat{EOM}=250^0-180^0=70^0\\\widehat{EON}+\widehat{EOM}=180^0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\widehat{EON}=70^0\\\widehat{EOM}=180^0-70^0=110^0\end{matrix}\right.\)
\(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)
mà \(\widehat{EON}=70^0\)
nên \(\widehat{FOM}=70^0\)
\(\widehat{EOM}=\widehat{FON}\)(hai góc đối đỉnh)
mà \(\widehat{EOM}=110^0\)
nên \(\widehat{FON}=110^0\)
1. Do góc BOC kề bù với góc AOB
=> Tia OA và tia OC đối nhau
Do góc AOD và góc AOB kề bù
=> tia OD và tia OB đối nhau
=> góc BOC và góc AOD là 2 góc đối đỉnh
Gọi OM, ON là 2 tia phân giác góc AOD và góc BOC
=> góc AOM = 1/2 góc AOD = 1/2 (180* - 135*) = 45*/2
mà góc AON = góc AOB + góc BON
=> góc AON = 135* + 45*/2
=> góc AOM + góc AON = 135* + 45*/2 + 45*/2 = 180*
=> góc MON = 180*
=> OM , ON là 2 tia đối nhau
Góc \(\widehat{xOt}\)và \(\widehat{zOx}\)là hai góc kề bù nên \(\widehat{xOt}+\widehat{xOz}=180^0\)mà \(\widehat{xOt}=4\widehat{xOz}\)
Do đó : \(4\widehat{xOz}+\widehat{xOz}=180^0\)hay \(5\widehat{xOz}=180^0\), suy ra \(\widehat{xOz}=180^0:5=36^0\), từ đó \(\widehat{xOt}=4\cdot36^0=144^0\)
Các cặp góc \(\widehat{yOz},\widehat{xOt};\widehat{yOt},\widehat{xOz}\)là cặp góc đối đỉnh , do đó :
\(\widehat{yOz}=\widehat{xOt}=144^0\); \(\widehat{yOt}=\widehat{xOz}=36^0\)
Bài làm:
Gọi O là giao điểm của AB và CD
Ta có Ô1 + Ô2 + Ô3 + Ô4 = 360 độ
⇒⇒ Ô4 = 360 độ - (Ô1 + Ô2 + Ô3) = 360 độ - 250 độ = 110 độ
Vì Ô2 = Ô4 (đối đỉnh) nên Ô2 = 110 độ
Ta có Ô1 + Ô2 = 180 độ (kề bù)
⇒⇒ Ô1 = 180 độ - Ô2 = 180 độ - 110 độ = 70 độ
Vì Ô1 = Ô3 (đối đỉnh) nên Ô3 = 70 độ
Đáp số : ........
Bài 1 : Bài giải
A B C D O
Ta có : \(\widehat{AOC}=\widehat{BOD}\) ( hai góc đối đỉnh ) mà \(\widehat{AOC}+\widehat{BOD}=100^o\)\(\Rightarrow\text{ }\widehat{AOC}=\widehat{BOD}=\frac{1}{2}\cdot100^o=50^o\)
\(\widehat{AOD}=\widehat{BOC}\) ( hai góc đối đỉnh ) mà \(\widehat{AOD}\) kề bù với \(\widehat{BOD}\) nên \(\widehat{AOD}+\widehat{BOD}=180^o\)
\(\Rightarrow\text{ }\widehat{AOD}+50^o=180^o\text{ }\Rightarrow\text{ }\widehat{AOD}=130^o\)
\(\Rightarrow\text{ }\widehat{AOD}=\widehat{BOC}=130^o\)
Bài 2 : Bài giải
N P Q M O
Ta có:
\(\widehat{MOP}=\widehat{NOQ}\) ( hai góc đối đỉnh )
\(\widehat{NOP}=\widehat{MOQ}\)( hai góc đối đỉnh )
Ta lại có : \(\widehat{MOP}\text{ và }\widehat{NOP}\) là 2 góc kề bù nên \(\widehat{MOP}+\widehat{NOP}=180^o\)
Mà \(\widehat{NOP}=\frac{2}{3}\widehat{MOP}\) nên \(\widehat{MOP}+\frac{2}{3}\widehat{MOP}=180^o\)
\(\Rightarrow\text{ }\frac{5}{3}\widehat{MOP}=180^o\text{ }\Rightarrow\text{ }\widehat{MOP}=108^o\)
\(\Rightarrow\text{ }\widehat{NOP}=\frac{2}{3}\cdot108^o=72^o\)
\(\Rightarrow\text{ }\widehat{MOP}=\widehat{NOQ}=108^o\)
\(\Rightarrow\text{ }\widehat{NOP}=\widehat{MOQ}=72^o\)
Trả lời :
Bn tham khảo đường link này nhé ^^
Câu hỏi của khongcanten - Toán lớp 7 - Học toán với OnlineMath
Chúc bn hc tốt <3
x O y z t
Ta có : \(\widehat{xOt}\)và \(\widehat{xOz}\)là 2 góc kề bù nên \(\widehat{xOt}+\widehat{xOz}=180^o\)( tc góc kề bù )
mà \(\widehat{xOt}=4\widehat{xOz}\)
Do đó \(4\widehat{xOt}+\widehat{xOz}=180^o\)hay \(5\widehat{xOz}=180^o\)
Vậy \(\widehat{xOz}=180^o:5=36^o\)
Suy ra \(\widehat{xOt}=4.36^o=144^o\)
Các cặp góc \(\widehat{yOz}\)và \(\widehat{xOt}\), \(\widehat{tOy}\)và \(\widehat{xOz}\)là các cặp góc đổi đỉnh do đó:
\(\widehat{yOz}=\widehat{xOt}=144^o\)
\(\widehat{tOy}=\widehat{xOz}=36^o\)
Chúc bạn học tốt !!!