Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
x x' y y' O ) 1 2 3 4 m n
a
Ta có:
\(\widehat{O_1}=\widehat{O_2}=60^0\left(đ.đ\right)\)
\(\widehat{O_1}+\widehat{O_2}=180^0\Rightarrow\widehat{0_2}=180^0-\widehat{O_1}=180-60^0=120^0\)
\(\widehat{O_2}=\widehat{O_4}=120^0\left(đ.đ\right)\)
b
Ta có:
\(\widehat{x'Oy}=\widehat{y'Ox}\Rightarrow\frac{1}{2}\widehat{x'Oy}=\frac{1}{2}\widehat{y'Ox}\Rightarrow\widehat{yOn}=\widehat{xOm}\)
\(\widehat{x'Oy}+\widehat{yOx}=180^0\)
\(\Rightarrow2\cdot\widehat{yOn}+\widehat{yOx}=180^0\)
\(\Rightarrow\widehat{yOn}+\widehat{yOx}+\widehat{xOm}=180^0\)
\(\Rightarrowđpcm\)
Bài 2
A O B C D M
a
Ta có:
\(\widehat{BOD}=\widehat{AOC}=90^0\Rightarrow\widehat{BOC}+\widehat{COD}=\widehat{AOD}+\widehat{COD}\Rightarrow\widehat{BOC}=\widehat{AOD}\)
b
Ta có:
\(\widehat{BOM}=\widehat{BOC}+\widehat{COM}=\widehat{AOD}+\widehat{MOD}=\widehat{MOA}\)
Hiển nhiên OM nằm giữa \(\widehat{AOB}\) nên suy ra đpcm
Toán ôn rồi Ko làm thì lượn đi.
x x' y y' O n m
a.sử dụng 2 góc đối đỉnh và 2 góc kề bù
b Dễ thấy:
\(\widehat{nOx}+\widehat{xOy'}+\widehat{y'Om}=30^0+120^0+30^0=180^0\) là góc bẹt
=> 2 tia đối nhau
hình vẽ :
y x' m n O x y'
bài giải :
a, vì góc x'Oy' là góc đối đỉnh, mà góc xOy = 60o nên x'Oy' = 60o .
Góc xOy và góc xOy' là 2 góc kề bù nên xOy + xOy' = 180o hay 60o + xOy' = 1800
do đó xOy' = 1800 - 600 = 1200
Góc xOy' là góc đối đỉnh với xOy' nên xOy' = x'Oy' = 1200
b, Om, On theo thứ tự là các tia phân giác của 2 góc xOy và xOy' nên :
\(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}\widehat{xOy}\) và \(\widehat{nOy'}=\frac{1}{2}\widehat{x'Oy'}\)
mà xOy = x'Oy' => xOm = mOy = nOx' = nOy' = \(\frac{1}{2}\widehat{xOy}\)
Ta có : xOm = nOy' = y'Ox =xOm = y'Ox + xOm + mOy = y'Ox + xOy = 180o
Góc mOn là góc bét , vì thế hai tia Om và On là 2 tia đối nhau
a ) Ta có : \(\widehat{xOy}+\widehat{x'Oy}=180^0\)
\(\Rightarrow\widehat{x'Oy}=180-60=120^0\)
Ta có :
\(\widehat{x'Oy}+\widehat{x'Oy'}=180\)
\(\Rightarrow\widehat{x'Oy'}=180-120=60^0\)
Ta lại có :
\(\widehat{x'Oy'}+\widehat{xOy'}=180^0\)
\(\Rightarrow\widehat{xOy'}=180-60=120^0\)
b ) Ta có : \(\widehat{xOy}=\widehat{x'Oy'}=60^0\)
\(\Rightarrow\) Tia phân giác của \(\widehat{xOy}=\widehat{x'Oy'}\)\(\Rightarrow Om\) và \(On\) là hai tia đối nhau .
Bạn tự vẽ hình nha ==''
a.
xOy = x'Oy' (2 góc đối đỉnh)
mà xOy = 600
=> x'Oy' = 600
xOy + yOx' = 1800 (2 góc kề bù)
600 + yOx' = 1800
yOx' = 1800 - 600
yOx' = 1200
mà yOx' = y'Ox (2 góc đối đỉnh)
=> y'Ox = 1200
b.
Om là tia phân giác của xOy
=> xOm = mOy = xOy/2
On là tia phân giác của x'Oy'
=> x'On = nOy' = x'Oy'/2
mà xOy = x'Oy' (2 góc đối đỉnh)
=> xOm = x'On
mà xOn + nOx' = 1800 (2 góc kề bù)
=> xOn + xOm = 1800
=> xOn và xOm kề bù
=> On và Om là 2 tia đối
Chúc bạn học tốt ^^
a) ta có O1+O2=180=> O2=180-O1=180-36=144
TA CÓ : O1=O3 =36 ( đối đỉnh )
O2=O4 =144 ( đối đỉnh)
b) ta có góc tOt'= góc tOx+O4+góc y'Ot'= \(\frac{36}{2}\)+144+ \(\frac{36}{2}\)=180
=> Ot và Ot' nằm trên cùng đường thẳng
mặt khác Ot và Ot' cùng chung gốc O
=> Ot và Ot' là 2 tia đối
0 1 2 3 4 x x' y y' t t'