K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2015

xOy + x'Oy = 180 độ ( kề bù ) 

Thay xOy = 4 x'Oy ta có 

4 x'Oy + x'Oy = 180 độ 

=> 5 x'Oy = 180 độ

=> x'Oy =  36 độ 

=> xOy = 4 . x'Oy = 4 . 36 = 144 độ 

xOy = x'Oy' = 144 độ ( hai góc đối đỉnh 

D là ý đúng 

10 tháng 6 2019

x O y y' x' t t'

+) Tính \(\widehat{yOx'}\)

Ta có: \(\widehat{yOx'}+\widehat{xOy}=180^0\)(kề bù)

hay \(\widehat{yOx'}+36^0=180^0\)

\(\Leftrightarrow\widehat{yOx'}=180^0-36^0\)

\(\Leftrightarrow\widehat{yOx'}=144^0\)

Vậy \(\widehat{yOx'}=144^0\)

+) Tính \(\widehat{y'Ox'}\)

Vì hai đường thẳng xx' và yy' cắt nhau tại O nên \(\widehat{y'Ox'}\) và \(\widehat{yOx}\)là hai góc đối đỉnh.

\(\Rightarrow\widehat{y'Ox'}=\widehat{xOy}=36^0\)

Vậy \(\widehat{y'Ox'}=36^0\)

+) Tính \(\widehat{y'Ox}\)

Vì hai đường thẳng xx' và yy' cắt nhau tại O nên \(\widehat{y'Ox}\) và \(\widehat{yOx'}\)là hai góc đối đỉnh.

\(\Rightarrow\widehat{yOx'}=\widehat{xOy}'=144^0\)

Vậy \(\widehat{y'Ox}=144^0\)

b) Vì \(\widehat{y'Ox'}=\widehat{xOy}\)mà Ot là tia phân giác của \(\widehat{xOy}\),mà Ot' là tia phân giác của \(\widehat{x'Oy'}\)nên Ot và Ot' (điều hiển nhiên)

24 tháng 5 2019

x x' y y' O m n

a) +) Vì Ox đối với Ox' và Oy đối với Oy' nên \(\widehat{xOy}\) và \(\widehat{x'Oy'}\) đối đỉnh

\(\Rightarrow\)\(\widehat{xOy}=\)\(\widehat{x'Oy'}\)

hay  \(\widehat{x'Oy'}\)\(=40^0\)

   +) Ta có: \(\widehat{xOy}+\widehat{x'Oy}=180^0\) (kề bù)

hay \(40^0+\widehat{x'Oy}=180^0\)

\(\Leftrightarrow\widehat{x'Oy}=180^0-40^0\)

\(\Leftrightarrow\widehat{x'Oy}=140^0\)

   +) Ta có: \(\widehat{xOy}+\widehat{xOy'}=180^0\) (kề bù)

hay \(40^0+\widehat{xOy'}=180^0\)

\(\Leftrightarrow\widehat{xOy'}=180^0-40^0\)

\(\Leftrightarrow\widehat{xOy'}=140^0\)

b) Vì \(\widehat{xOy}=\widehat{x'Oy'}\)(hai góc đối đỉnh)

Mà Om là tia phân giác của góc xOy và On là tia phân giác của x'Oy' nên Om đối On (đpcm)

27 tháng 7 2019

y m x O x' n y'

a, Vì góc x'Oy' và góc xOy là hai góc đối đỉnh, mà \(\widehat{xOy}=40^0\)nên \(\widehat{x'Oy'}=40^0\). Góc xOy và góc xOy' là hai góc kề bù nên \(\widehat{xOy}+\widehat{xOy'}=180^0\)hay \(40^0+\widehat{xOy'}=180^0\)

=> \(\widehat{xOy'}=180^0-40^0=140^0\)

Góc xOy' là góc đối đỉnh với góc xOy' nên \(\widehat{xOy}=\widehat{x'Oy}=140^0\)

b, Om,On theo thứ tự là các tia phân giác của hai góc xOy và x'Oy' nên \(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}\widehat{xOy}\)và \(\widehat{nOx'}=\widehat{mOy'}=\frac{1}{2}\widehat{x'Oy'}\)mà \(\widehat{xOy}=\widehat{x'Oy'}\), do đó \(\widehat{xOm}=\widehat{mOy}=\widehat{nOx'}=\widehat{nOy'}=\frac{1}{2}\widehat{xOy}\).

Ta có : \(\widehat{xOm}=\widehat{nOy'}=\widehat{y'Ox}=\widehat{xOm}=\widehat{y'Ox}+\widehat{xOm}+\widehat{mOy}\)

\(=\widehat{y'Ox}+\widehat{xOy}=180^0\)

Góc mOn là góc bẹt,vì thế hai tia Om,On là hai tia đối nhau

8 tháng 8 2019

Mk đg cần gấp giúp mk với nha mn :)))

16 tháng 9 2017

vì  xoy và x'oy là 2 góc kề bù => xoy + x'oy =180

=> x'oy = 117

16 tháng 9 2017

x x' y y' O

Vì \(\widehat{xOY}\)kề bù với \(\widehat{x'Oy}\)

Ta có: \(\widehat{xOy}=60^o\)\(\Rightarrow\)\(\widehat{x'Oy}=180^o-\widehat{xOy}=180^o-60^o=120^o\) 

k mik nha

1) Cho hai đường thẳng xx' và yy' cắt nhau tại điểm O. Biết số đo góc xOy bằng 4 lần số đo góc x'Oy. Số đo góc xOy là.................2) Hai đường thẳng xx' và yy' cắt nhau tại điểm O tạo thành 4 góc, trong đó tổng hai góc xOy và x'Oy' bằng 248o. Số đo góc xOy' là............3) Giá trị của x thỏa mãn:\(\frac{1}{x\left(x+1\right)}=\frac{1}{x}+\frac{1}{2011}\)   là..............4) Cho ba đường thẳng xx'; yy'; zz'...
Đọc tiếp

1) Cho hai đường thẳng xx' và yy' cắt nhau tại điểm O. Biết số đo góc xOy bằng 4 lần số đo góc x'Oy. Số đo góc xOy là.................

2) Hai đường thẳng xx' và yy' cắt nhau tại điểm O tạo thành 4 góc, trong đó tổng hai góc xOy và x'Oy' bằng 248o. Số đo góc xOy' là............

3) Giá trị của x thỏa mãn:\(\frac{1}{x\left(x+1\right)}=\frac{1}{x}+\frac{1}{2011}\)   là..............

4) Cho ba đường thẳng xx'; yy'; zz' đồng quy tại O sao cho góc xOy = 60o và Ox là tia phân giác của góc xOy'. Số góc có số đo bằng 120trong hình vẽ là: ........... góc.

5) Cho a, b \(\in Z\), a < 0, b > 0. So sánh hai số hữu tỉ \(\frac{a}{b}\)và \(\frac{a+2012}{b+2012}\)ta được\(\frac{a}{b}\)..............\(\frac{a+2012}{b+2012}\)(Điền dấu >,<,= thích hợp vào chỗ chấm)

6) Một người mang cam đi bán. Ngày đầu bán được \(\frac{2}{7}\)số cam mang đi. Ngày thứ hai bán được \(\frac{3}{5}\)số cam còn lại. Ngày thứ ba bán nốt 14 quả thì vừa hết. Số cam mà người đó mang đi bán là ...........quả

7) Giá trị x thỏa mãn: \(\frac{x-4}{2015}-\frac{1}{2015}=\frac{10-2x}{2015}\)là x =.................

8) Tỉ số của hai số a và b là \(\frac{5}{8}\), tỉ số của hai số c và d là\(\frac{15}{26}\). Tỉ số của c và a là

0
8 tháng 8 2019

1. x O x' y y'

Giải: a) Ta có: \(\widehat{xOy}+\widehat{yOx'}=180^0\) (kề bù)

=> \(\widehat{yOx'}=180^0-\widehat{xOy}=180^0-75^0=105^0\)

Ta lại có: \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)

Mà \(\widehat{xOy}=75^0\) => \(\widehat{x'Oy'}=75^0\)

 \(\widehat{yOx'}=\widehat{xOy'}\) (đối đỉnh)

Mà \(\widehat{yOx'}=105^0\) => \(\widehat{xOy'}=105^0\)

  

8 tháng 8 2019

1b) Ta có: \(\widehat{xOy}+\widehat{x'Oy}=180^0\) (kề bù)

mà \(\widehat{x'Oy}-\widehat{xOy}=30^0\)

=> \(2.\widehat{x'Oy}=210^0\)

=> \(\widehat{x'Oy}=210^0:2=105^0\) => \(\widehat{x'Oy}=\widehat{xOy'}=105^0\) (đối đỉnh)

          => \(\widehat{xOy}=180^0-105^0=75^0\) => \(\widehat{xOy}=\widehat{x'Oy'}=75^0\) (đối đỉnh)

2.  O x y x' y' m m'

Giải: a) Ta có: \(\widehat{xOm}=\widehat{x'Om'}\) (đối đỉnh)

          \(\widehat{mOy}=\widehat{m'Oy'}\) (đối đỉnh)

Mà \(\widehat{xOm}=\widehat{mOy}\) (gt)

=> \(\widehat{x'Om'}=\widehat{m'Oy'}\) 

Ta lại có: \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)

Mà \(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}.\widehat{xOy}\) (vì  Om là tia p/giác)

=> \(\widehat{x'Om'}=\widehat{m'Oy'}=\frac{1}{2}.\widehat{xOy}\) 

=> Om' nằm giữa Ox' và Oy'

=> Om' là tia p/giác của góc x'Oy'

b) Tự viết