Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé !!!
- TA có : \(\widehat{AMC}=\widehat{BMD}=30\)độ ( Đối đỉnh )
Vì góc AMD và góc BMD kề bù nên :
<=> Góc AMD + góc BMD = 180 độ
<=> góc AMD = 150 độ
b) Cặp đóc đối đỉnh : góc AMC và BMD
góc AMD và BMC
Cặp góc bù nhau : góc ACM và AMD
góc BMD và BMC
M a b c d
Ta có: \(\widehat{aMc}\) và \(\widehat{bMd}\) đối đỉnh nên: \(\widehat{aMc}=\widehat{bMd}\)
\(\widehat{aMd}\) và \(\widehat{bMc}\) đối đỉnh nên: \(\widehat{aMd}=\widehat{bMc}\)
a)
\(\widehat{aMc}=\widehat{bMd}=35^o\)
\(\widehat{aMd}=\widehat{bMc}=180^o-35^o=145^o\)
b)
\(\widehat{aMd}=3\widehat{aMc}\Leftrightarrow4\widehat{aMc}=180^o\)
\(\Leftrightarrow\widehat{aMc}=\widehat{bMd}=45^o\)
\(\Leftrightarrow\widehat{aMd}=\widehat{bMc}=180^o-45^o=135^o\)
c)
\(4\widehat{aMd}=5\widehat{aMc}\Leftrightarrow\widehat{aMd}=\dfrac{5}{4}\widehat{aMc}\)
\(\Leftrightarrow\dfrac{9}{4}\widehat{aMc}=180^o\)
\(\Leftrightarrow\widehat{aMc}=\widehat{bMd}=80^o\)
\(\Leftrightarrow\widehat{aMd}=\widehat{bMc}=180^o-80^o=100^o\)
Vậy...
a) Gọi số đo góc C là x (độ) (0<x<70). => Số đo góc B là x + 40 (độ).
Tổng 3 góc trong 1 tam giác là 180 độ. => Số đo góc A là 180 - (x + 40) - x = 140 - 2x (độ).
AM phân giác góc BAC. => Số đo góc BAM = Số đo góc CAM = (140 - 2x) : 2 = 70 - x (độ).
Tổng 3 góc trong tam giác AMC là 180 độ. => Số đo góc AMC = 180 - Số đo góc CAM - Số đo góc C = 180 - (70 - x) - x = 110 (độ).
Đáp số: Số đo góc AMC = 110 độ.
b) D là trung điểm BC, ED vuông góc với BC. => Tam giác EBC cân tại E. => Số đo góc EBC = Số đo góc ECB = x (độ).
Mà số đo góc ABC là (x + 40) (độ). => Số đo góc ABE = Số đo góc ABC - Số đo góc EBC = (x + 40) - x = 40 (độ).
Đáp số: Số đo góc ABE = 40 độ.
A B C M D E
a: \(\widehat{dMb}=\widehat{aMc}=35^0\)
\(\widehat{aMd}=\widehat{bMc}=180^0-35^0=145^0\)
b: \(\widehat{aMd}=\dfrac{3}{4}\cdot180^0=135^0\)
=>\(\widehat{bMc}=135^0\)
\(\widehat{aMc}=180^0-135^0=45^0\)
nên \(\widehat{bMd}=45^0\)
c: \(4\cdot\widehat{aMd}=5\cdot\widehat{aMc}\)
=>\(\widehat{aMd}=\dfrac{5}{4}\widehat{aMc}\)
\(\widehat{aMd}=\dfrac{5}{9}\cdot180^0=100^0\)
=>\(\widehat{bMc}=100^0\)
\(\widehat{aMc}=180^0-100^0=80^0\)
nên \(\widehat{bMd}=80^0\)
x O y y' x' t t'
+) Tính \(\widehat{yOx'}\)
Ta có: \(\widehat{yOx'}+\widehat{xOy}=180^0\)(kề bù)
hay \(\widehat{yOx'}+36^0=180^0\)
\(\Leftrightarrow\widehat{yOx'}=180^0-36^0\)
\(\Leftrightarrow\widehat{yOx'}=144^0\)
Vậy \(\widehat{yOx'}=144^0\)
+) Tính \(\widehat{y'Ox'}\)
Vì hai đường thẳng xx' và yy' cắt nhau tại O nên \(\widehat{y'Ox'}\) và \(\widehat{yOx}\)là hai góc đối đỉnh.
\(\Rightarrow\widehat{y'Ox'}=\widehat{xOy}=36^0\)
Vậy \(\widehat{y'Ox'}=36^0\)
+) Tính \(\widehat{y'Ox}\)
Vì hai đường thẳng xx' và yy' cắt nhau tại O nên \(\widehat{y'Ox}\) và \(\widehat{yOx'}\)là hai góc đối đỉnh.
\(\Rightarrow\widehat{yOx'}=\widehat{xOy}'=144^0\)
Vậy \(\widehat{y'Ox}=144^0\)
b) Vì \(\widehat{y'Ox'}=\widehat{xOy}\)mà Ot là tia phân giác của \(\widehat{xOy}\),mà Ot' là tia phân giác của \(\widehat{x'Oy'}\)nên Ot và Ot' (điều hiển nhiên)
M A B C D
Ta có: \(\widehat{AMC}+\widehat{AMD}=180^o\)(2 góc kề bù) (1)
Mà \(\widehat{AMC}=2\widehat{AMD}\)(Đề cho) (Ngoặc ''}'' 2 điều lại)
=> \(2\widehat{AMD}+\widehat{AMD}=180^o\)
=> \(\left(2+1\right)\widehat{AMD}=180^o\)
=> \(3\widehat{AMD}=180^o\)
=> \(\widehat{AMD}=180^o:3\)
=> \(\widehat{AMD}=60^o\)(2)
Từ (1) và (2) => \(\widehat{AMC}=180^o-60^o=120^o\)
Lại có: \(\widehat{AMC}=\widehat{BMD}\)(2 góc đối đỉnh) (Ngoặc ''}'' 2 điều lại)
=> \(\widehat{BMD}=120^o\)
Mặt khác: \(\widehat{AMD}=\widehat{BMC}\)(2 góc đối đỉnh)
Mà \(\widehat{AMD}=60^o\)(Theo (2)) (Ngoặc ''}'' 2 điều lại)
=> \(\widehat{BMC}=60^o\)
Vậy \(\widehat{AMC}=\widehat{BMD}=120^o\)
\(\widehat{AMD}=\widehat{BMC}=60^o\)
Hình vẽ sai số đo nên tự chỉnh lại y như đáp án nhé