K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2018

2F(x) = 2 (x3 - 2x2 + 0x - 10)

+

G(x) = -2x3 + 3x2 - 8x -1

=

2F(x) = 2x3 - 4x2 + 0x -20

+

G(x) = -2x3 + 3x2 - 8x -1

=

H(x) = 2F(x) + G(x) = -x2 - 8x -21

ta có:

H(x) = -x2 - 8x -21

vì -x2 ≤ 0 ⇒ -x2 - 8x -21 < 0

⇒ vô nghiệm

17 tháng 6 2019

Bài 1 ( a )

\(A_x=-4x^5-x^3+4x^2+5x+9+4x^5-6x^2-2\)

\(=-x^3-2x^2+5x-7\)

\(B_x=-3x^4-2x^3+10x^2-8x+5x^3-7-2x^3+8x\)

\(=-3x^4+x^3+10x^2-7\)

17 tháng 6 2019

Bài 1 ( b )

\(P_x=\left(-x^3-2x^2+5x-7\right)+\left(3x^4+x^3+10x-7\right)\)

\(=-x^3-2x^2+5x-7+3x^4+x^3+10x-7\)

\(=3x^4-2x^2+15x-14\)

\(Q_x=\left(-x^3-2x^2+5x-7\right)-\left(3x^4+x^3+10x-7\right)\)

\(=-x^3-2x^2+5x-7-3x^4-x^3-10x+7\)

\(=-3x^4-2x^3-5x\)

22 tháng 6 2019

a) \(f\left(x\right)=5x^3-7x^2+2x+5\)

\(\Rightarrow f\left(1\right)=5.1^3-7.1^2+2.1+5\)

\(\Rightarrow f\left(1\right)=5.1-7.1+2+5\)

\(\Rightarrow f\left(1\right)=5-7+7\)

\(\Rightarrow f\left(1\right)=5\)

Vậy f(1) = 5.

\(g\left(x\right)=7x^3-7x^2+2x+5\)

\(\Rightarrow g\left(\frac{1}{2}\right)=7.\left(\frac{1}{2}\right)^3-7.\left(\frac{1}{2}\right)^2+2.\frac{1}{2}+5\)

\(\Leftrightarrow g\left(\frac{1}{2}\right)=7.\frac{1}{8}-7.\frac{1}{4}+1+5\)

\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{7}{8}-\frac{14}{8}+6\)

\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{-7}{8}+\frac{48}{8}\)

\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{41}{8}\)

Vậy \(g\left(\frac{1}{2}\right)=\frac{41}{8}\)

22 tháng 6 2019

\(h\left(x\right)=2x^3+4x+1\)

\(\Rightarrow h\left(0\right)=2.0^3+4.0+1\)

\(\Rightarrow h\left(0\right)=0+0+1\)

\(\Rightarrow h\left(0\right)=1\)

Vậy \(h\left(0\right)=1\)

Câu 2: 

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b=2\\3^7\cdot a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{1093}\\b\simeq2\end{matrix}\right.\)

Câu 3: 

a: \(f\left(x\right)=4x^2+3x+1-3x^2+2x+3=x^2+5x+4\)

b: f(-4)=16-20+4=0

=>x=-4 là nghiệm 

c: Đặt f(x)=0

=>(x+4)(x+1)=0

=>x=-4 hoặc x=-1

2 tháng 5 2017

1. h(x) = f(x) -g(x) = [2x3 -4x5 +7x2 -(3x-1)] -(-4x5 + 2x3 +7x2-12x+3) = 2x3-4x5 + 7x2 -3x+1 +4x5-2x3-7x2+12x+3 = 9x+4

Vậy h(x) = 9x+4

21 tháng 5 2016

a, 4x^3 +3x^2+7x

b, = 0

7 tháng 5 2017

a)

         f(x)= -x-7x4 -2x3+ x+ 4x + 8

         g(x)=x+7x4+2x3+3x- 3x   -8

f(x)+g(x)  =0   -0    -0    + 4x2 +x+0

         g(x)=x+7x4+2x3+3x- 3x  -8

         f(x)= -x-7x4 -2x3+ x+ 4x + 8

g(x)-f(x)  =2x5+14x4+4x3+2x2-7x  -16

b)

Bậc:5

Hệ số cao nhất:2

hệ số tự do:16

c)

Để đt h(x) có nghiệm thì 

4x2+x=0

->4x.x+x=0

->(4x+1)x=0

->th1:x=0 -> x=0

        4x+1=0 -> x=-1/4

Vậy đt h(x) có nghiệm là x=0 hoặc x=-1/4

Lần sau bn viết rõ hơn nhé

mik dich mún lòi mắt

9 tháng 4 2016

1/a, f(x) - g(x) + h(x) = x3 - 2x2 + 3x +1 - x3 - x + 1 +2x2 - 1

=(x3 - x3) + (-2x2 + 2x2) + (3x - x) + (1 + 1 - 1)

=2x + 1

b, f(x) - g(x) + h(x) = 0

<=> 2x + 1 = 0

<=> 2x = -1

<=> x = -1/2

Vậy x = -1/2 là nghiệm của đa thức f(x) - g(x) + h(x)

2/ a, 5x + 3(3x + 7)-35 = 0

<=> 5x + 9x + 21 - 35 = 0

<=> 14x - 14 = 0

<=> 14(x - 1) = 0

<=> x-1 = 0 

<=> x = 1

Vậy 1 là nghiệm của đa thức 5x + 3(3x + 7) -35

b, x2 + 8x - (x2 + 7x +8) -9 =0

<=> x2 + 8x - x2 - 7x - 8 - 9 =0

<=> (x2 - x2) + (8x - 7x) + (-8 -9)

<=> x - 17 = 0

<=> x =17

Vậy 17 là nghiệm của đa thức x2 + 8x -(x2 + 7x +8) -9

3/ f(x) = g (x) <=> x3 +4x2 - 3x + 2 = x2(x + 4) + x -5

<=> x3 +4x2 - 3x + 2 = x3 + 4x2 + x - 5 

<=> -3x + 2 = x - 5

<=> -3x = x - 5 - 2 

<=> -3x = x - 7

<=>2x = 7

<=> x = 7/2 

Vậy f(x) = g(x) <=> x = 7/2

4/ có k(-2) = m(-2)2 - 2(-2) +4 = 0

=>  4m + 4 + 4 = 0

=> 4m + 8 = 0

=> 4m = -8

=> m = -2

7 tháng 4 2017

mk ngại làm lắm