K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2018

B B C C H H A A M M N N

a) Xét hai tam giác vuông AHB và AHC có:

Cạnh AH chung

AB = AC (Tam giác ABC cân tại A)

\(\Rightarrow\Delta AHB=\Delta AHC\)  (Cạnh huyền - cạnh góc vuông)

b) Do \(\Delta AHB=\Delta AHC\Rightarrow\widehat{MAH}=\widehat{NAH}\)

Xét hai tam giác vuông AMH và ANH có:

Cạnh AH chung

\(\widehat{MAH}=\widehat{NAH}\)

\(\Rightarrow\Delta AMH=\Delta ANH\)  (Cạnh huyền - góc nhọn)

\(\Rightarrow AM=AN\)

c) Xét tam giác AMN cân tại A nên \(\widehat{AMN}=\frac{180^o-\widehat{BAC}}{2}\)

Tam giác ABC cũng cân tại A nên \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\)

Suy ra \(\widehat{AMN}=\widehat{ABC}\)

Chúng lại ở vị trí đồng vị nên MN // BC.

d) Xét hai tam giác vuông BMH và CNH có:

BH = CH   (Do \(\Delta AHB=\Delta AHC\))

\(\widehat{MBH}=\widehat{NCH}\)

\(\Rightarrow\Delta BMH=\Delta CNH\)  (Cạnh huyền - góc nhọn)

\(\Rightarrow MH=NH\)

\(\Rightarrow MH^2=NH^2\Rightarrow BH^2-MB^2=AH^2-AN^2\)

 \(AH^2+BM^2=AN^2+BH^2\)

17 tháng 3 2020

Gọi giao điểm AC và BD là I

Pytago lần lượt vào các tam giác vuông AIB;BIC;CID;AID ta được :

\(AB^2=AI^2+BI^2\)

\(BC^2=BI^2+CI^2\)

\(CD^2=DI^2+CI^2\)

\(AD^2=DI^2+CI^2\)

\(\Rightarrow\hept{\begin{cases}AB^2+DC^2=AI^2+BI^2+CI^2+DI^2\\BC^2+AD^2=AI^2+BI^2+CI^2+DI^2\end{cases}}\)

\(\RightarrowĐPCM\)

17 tháng 3 2020

\(AD^2=AI^2+ID^2\)nha 

-.- mơ ngủ tẹo :v

~~

2 tháng 8 2020

A F B D C E M

Áp dụng định lí Pi-ta-go vào tam giác vuông BDM, ta có:

BM2 = BD2 + DM2 => BD2 = BM2 – DM2    (1)

Áp dụng định lí Pi-ta-go vào tam giác vuông CEM, ta có:

CM2 = CE2 + EN2 => CE2 = CM2 – EM2    (2)

Áp dụng định lí Pi-ta-go vào tam giác vuông AFM, ta có:

AM2 = AF2 + FM2 => AF2 = AM2 – FM2    (3)

Cộng từng vế của (1), (2) và (3) ta có:

BD2 + CE2 + AF2 = BM2 – DM2 + CM2 – EM2 + AM2 – FM2 (4)

Áp dụng định lí Pi-ta-go vào tam giác vuông BFM, ta có:

BM2 = BF2 + FM2     (5)

Áp dụng định lí Pi-ta-go vào tam giác vuông CDM, ta có:

CM2 = CD2 + DM2     (6)

Áp dụng định lí Pi-ta-go vào tam giác vuông AEM, ta có:

AM2 = AE2 + EM2     (7)

Thay (5), (6), (7) vào (4) ta có:

BD2 + CE2 + AF2

= BF2 + FM2 – DM2 + CD2 + DM2 – EM2 + AE2 + EM2 – FM2

= DC2 + EA2 + FB2

Vậy BD2 + CE2 + AF2 = DC2 + EA2 + FB2

25 tháng 2 2020

A B C H

Xét tam giác ABC vuông tại A

ta có AB2+AC2=BC2   (1)

Xét tam giác ABH vuông tại H

ta có BH2+AH2=AB2   (2)

Xét tam giác ACH vuông tại H

ta có CH2+AH2=AC2   (3)

Thay (2), (3) vào (1) ta có

BH2+AH2+CH2+AH2=BC2

BH2+2AH2+CH2=BC2

27 tháng 6 2020

Câu b sai đề, sửa thành: DB2 + DC2 = 2DE2 + EB2 + EC2

a, Xét △ADB vuông tại A và △EDB vuông tại E

Có: DB là cạnh chung

      ABD = EBD (gt)

=> △ADB = △EDB (ch-gn)

=> AD = ED (2 cạnh tương ứng)

b, Xét △EDB vuông tại E có: BD2 = DE2 + EB2 (định lý Pytago)   (1)

Xét △DEC vuông tại E có: CD2 = DE2 + EC2 (định lý Pytago)      (2)

Cộng 2 vế (1) và (2) => DB2 + DC2 = DE2 + DE2 + EB2 + EC2

=> DB2 + DC2 = 2DE2 + EB2 + EC2

27 tháng 6 2020

a.Xét hai tam giác vuông ABD và tam giác vuông EBD có 

              góc BAD = góc BED = 90độ

             cạnh BD chung 

             góc ABD = góc EBD [ vì BD là phân giác góc B ]

Do đó ; tam giác ABD = tam giác EBD [ cạnh huyền - góc nhọn ]

\(\Rightarrow\)DA = DE [ cạnh tương ứng ]

b.Áp dụng định lí Py-ta-go vào tam giác vuông EBD có 

\(DB^2=EB^2+DE^2\)[ 1 ]

Áp dụng định lí Py-ta-go vào tam giác vuông EDC có 

\(DC^2=DE^2+EC^2\)[ 2 ]

Từ [ 1 ] và [ 2 ] suy ra 

\(DB^2+DC^2=EB^2+DE^2+DE^2+EC^2\)

\(\Rightarrow DB^2+DC^2=2DE^2+EB^2+EC^2\)

Học tốt

14 tháng 3 2017

bằng1

14 tháng 3 2017

A B C E D M I HÌNH NÈ