Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AN}=\left(x-2;y\right)\\\overrightarrow{BN}=\left(x-1;y-2\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}AN=\sqrt{\left(x-2\right)^2+y^2}=\sqrt{x^2+y^2-4x+4}\\BN=\sqrt{\left(x-1\right)^2+\left(y-2\right)^2}=\sqrt{x^2+y^2-2x-4y+5}\end{matrix}\right.\)
\(AN=2BN\Leftrightarrow AN^2=4BN^2\)
\(\Leftrightarrow x^2+y^2-4x+4=4x^2+4y^2-8x-16y+20\)
\(\Leftrightarrow3x^2+3y^2-4x-16y+16=0\)
\(\Leftrightarrow x^2+y^2-\frac{4}{3}x-\frac{16}{3}y+\frac{16}{3}=0\)
\(\Rightarrow\left\{{}\begin{matrix}a=\frac{2}{3}\\b=\frac{8}{3}\\R^2=a^2+b^2-\frac{16}{3}=\frac{20}{9}\end{matrix}\right.\) \(\Rightarrow a+b+R^2=\frac{50}{9}\)
a) Phương trình đường tròn \(\left( C \right)\) là: \({\left( {x + 2} \right)^2} + {\left( {y - 5} \right)^2} = 49\).
b) Bán kính đường tròn là: \(R = IA = \sqrt {{{\left( { - 2 - 1} \right)}^2} + {{\left( {2 - \left( { - 2} \right)} \right)}^2}} = 5\)
Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 25\)
c) Gọi \(I\left( {a;b} \right)\) là trung điểm AB. Vậy tọa độ điểm I là: \(I\left( { - 2;1} \right)\)
Bán kính đường tròn là: \[R = IA = \sqrt {{{\left( { - 1 + 2} \right)}^2} + {{\left( { - 3 - 1} \right)}^2}} = \sqrt {17} \]
Phương trình đường tròn là: \({\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} = 17\)
d) Bán kính đường tròn là: \(R = \frac{{\left| {1 + 2.3 + 3} \right|}}{{\sqrt {{1^2} + {2^2}} }} = 2\sqrt 5 \)
Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 20\)
Lấy \(I\)là trung điểm của \(AB\).
Khi đó \(\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{0}\)
\(\overrightarrow{MA}.\overrightarrow{MB}=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)\left(\overrightarrow{MI}+\overrightarrow{IB}\right)=\overrightarrow{MI}.\overrightarrow{MI}+\overrightarrow{MI}\left(\overrightarrow{IA}+\overrightarrow{IB}\right)+\overrightarrow{IA}.\overrightarrow{IB}\)
\(=MI^2-\frac{a^2}{4}=2a^2\Leftrightarrow MI^2=\frac{9}{4}a^2\)
Suy ra \(M\)thuộc đường tròn tâm \(I\)bán kính \(\frac{3a}{2}\).
Điểm \(M\left( {x;y} \right)\) thuộc đường tròn \(\left( C \right)\) tâm \(I\left( {a;b} \right)\), bán kính \(R\) khi và chỉ khi \(MI = R \Leftrightarrow \sqrt {{{(x - a)}^2} + {{(y - b)}^2}} = R\) hay \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\)
tham khảo
https://cungthi.online/cau-hoi/cho-tam-giac-abc-tap-hop-nhung-diem-m-thoaman-4mambmc-30238-1652.html
Gọi G là trọng tâm của ΔABC
⇒ \(3\overrightarrow{MG}=\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\)
⇒ \(MA^2+MB^2+MC^{2^{ }}+2VT=9MG^2\)
⇒ VT = 9MG2 - MA2 + MB2 + MC2
⇒ \(\dfrac{a^2}{6}\) = 9MG2 - MA2 + MB2 + MC2
MA2 + MB2 + MC2
\(=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)
= 3MG2 + 2\(\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)+ GA2 + GB2 + GC2
= 3MG2 + \(GA^2+GB^{2^{ }}+GC^2\)
do \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
Vậy ta có
\(\dfrac{a^2}{6}=6MG^2-GA^2-GB^2-GC^2\)
⇔ \(\dfrac{a^2}{6}+\left(GA^2+GB^2+GC^2\right)=6MG^2\)(1)
Lưu ý, GA,GB,GC lần lượt bằng \(\dfrac{2}{3}\) độ dài các đường trung tuyến kẻ từ A,B,C. Nhưng do ΔABC đều nên chúng sẽ lần lượt bằng \(\dfrac{2}{3}\) đường cao kẻ từ A,B,C (đặt là ha ; hb; hc)
Dễ dàng tìm được ha = hb = hc = \(\dfrac{a\sqrt{3}}{2}\)
⇒ GA = GB = GC = \(\dfrac{a\sqrt{3}}{3}\)
⇒ GA2 = GB2 = GC2 = \(\dfrac{a^2}{3}\)
⇒ GA2 + GB2 + GC2 = a2
Thay vào (1)
\(\dfrac{a^2}{6}+a^2=3MG^2\) ⇔ MG2 = \(\dfrac{7a^2}{18}\)
⇔ MG = \(\dfrac{a\sqrt{14}}{6}\)
Vậy R = \(\dfrac{a\sqrt{14}}{6}\)
Ai xem hộ sai chỗ nào vs
a) Phương trình đường tròn là: \({\left( {x + 3} \right)^2} + {\left( {y - 4} \right)^2} = 81\)
b) Bán kính đường tròn là: \(R = IM = \sqrt {{{\left( {4 - 5} \right)}^2} + {{\left( { - 1 + 2} \right)}^2}} = \sqrt 2 \)
Phương trình đường tròn là: \({\left( {x - 5} \right)^2} + {\left( {y + 2} \right)^2} = 2\)
c) Bán kính đường tròn là: \(R = \frac{{\left| {5.1 - 12.\left( { - 1} \right) - 1} \right|}}{{\sqrt {{5^2} + {{\left( { - 12} \right)}^2}} }} = \frac{{16}}{{13}}\)
Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = {\left( {\frac{{16}}{{13}}} \right)^2}\)
d) Gọi \(I\left( {a;b} \right)\) là trung điểm AB. Vậy tọa độ điểm I là: \(I\left( {1;1} \right)\)
Bán kính đường tròn là: \(R = IA = \sqrt {{{\left( {3 - 1} \right)}^2} + {{\left( { - 4 - 1} \right)}^2}} = \sqrt {29} \)
Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 29\)
e) Giả sử tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = IB = IC \Leftrightarrow I{A^2} = I{B^2} = I{C^2}\)
Vì \(I{A^2} = I{B^2},I{B^2} = I{C^2}\) nên: \(\left\{ \begin{array}{l}{\left( {1 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( {3 - a} \right)^2} + {\left( {1 - b} \right)^2}\\{\left( {3 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( {0 - a} \right)^2} + {\left( {4 - b} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 3\end{array} \right.\) b
Vậy \(I\left( {2;3} \right)\) và \(R = IA = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} = \sqrt 5 \)
Vậy phương trình đường tròn đi qua 3 điểm A,B, C là: \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 5\)
a) Đường tròn (C) tâm \(O\left( {0;0} \right)\), bán kính \(R = 4\) có phương trình là: \({x^2} + {y^2} = 16\)
b) Đường tròn (C) tâm \(I\left( {2; - 2} \right)\), bán kính \(R = 8\) có phương trình: \({\left( {x - 2} \right)^2} + {\left( {y + 2} \right)^2} = 64\)
c) Gọi M, N lần lượt là trung điểm của AB, AC ta có: \(M\left( {\frac{1}{2};\frac{5}{2}} \right),N\left( {\frac{5}{2};\frac{7}{2}} \right)\)
Đường trung trực \(\Delta \)của đoạn thẳng AB là đường thẳng đi qua M và nhận vt \(\overrightarrow {BA} = (1;3)\) làm vt pháp tuyến, nên có phương trình \(x + 3y - 8 = 0\)
Đường trung trực d của đoạn thẳng AC là đường thẳng đi qua N và nhận vt \(\overrightarrow {AC} = (3; - 1)\) làm vt pháp tuyến, nên có phương trình \(3x - y - 4 = 0\)
\(\Delta \) cắt d tại điểm \(I(2;2)\) cách đều ba điểm A, B, C suy ra đường tròn (C) cần tìm có tâm \(I(2;2)\) và có bán kính \(R = IA = \sqrt 5 \). Vậy (C) có phương trình: \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 5\)
Gọi \(N\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AN}=\left(x-2;y\right)\\\overrightarrow{BN}=\left(x-1;y-2\right)\end{matrix}\right.\)
\(NA=2NB\Leftrightarrow\sqrt{\left(x-2\right)^2+y^2}=2\sqrt{\left(x-1\right)^2+\left(y-2\right)^2}\)
\(\Leftrightarrow x^2-4x+4+y^2=4\left[x^2-2x+1+y^2-4y+4\right]\)
\(\Leftrightarrow3x^2+3y^2-4x-16y+16=0\)
\(\Leftrightarrow x^2+y^2-\frac{4}{3}x-\frac{16}{3}y+\frac{16}{3}=0\)
\(\Leftrightarrow\left(x-\frac{2}{3}\right)^2+\left(y-\frac{8}{3}\right)^2=\frac{20}{9}\)
\(\Rightarrow a+b+R^2=\frac{2}{3}+\frac{8}{3}+\frac{20}{9}=\frac{50}{9}\)