K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

x3+2x2+x-1=x3-x2+2x+1

x3+2x2+x-1-x3+x2-2x-1=0

3x2-x-2=0

(3x2-3x)+(2x-2)=0

3x(x-1)+2(x-1)=0

(x-1)(3x+2)=0

=>x-1=0=>x=1

3x-2=0=>x=\(\frac{-2}{3}\)

Chúc bn học giỏi, k cho mình nhé!

17 tháng 4 2016

Ta có P(x)=Q(x)

=> x^3+2x^2+x-1=x^3-x^2+2x+1

<=> 2x^2+x-1=x^2+2x+1

<=>(2x^2+x^2)-(2x-x)=-1+1

MÌNH CHỈ BIẾT ĐƯỢC BẤY NHIÊU THÔI!!!! ^_^

a: Q(x)=3x^4+x^3+2x^2+x+1-2x^4+x^2-x+2

=x^4+x^2+3x^2+3

b: H(x)=2x^4-x^2+x-2-x^4+x^3-x^2+2

=x^4+x^3-2x^2+x

c: R(x)=2x^3+x^2+1+2x^4-x^2+x-2

=2x^4+2x^3+x-1

3 tháng 5 2023

a, \(P\left(x\right)=4x^3+2x-3+2x-2x^2-1\\ =4x^3-2x^2+\left(2x+2x\right)+\left(-3-1\right)\\ =4x^3-2x^2+4x-4\)

Bậc của P(x) là 3

\(Q\left(x\right)=6x^3-3x+5-2x+3x^2\\ =6x^3+3x^2+\left(-3x-2x\right)+5\\ =6x^3+3x^2-5x+5\)

Bậc của Q(x) là 3

b, \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=4x^3-2x^2+4x-4+6x^3+3x^2-5x+5\\ =\left(4x^3+6x^3\right)+\left(-2x^2+3x^2\right)+\left(4x-5x\right)+\left(-4+5\right)\\ =10x^3+x^2-x+1\)

3 tháng 5 2023

Mình cảm ơn

17 tháng 6 2020

\(P\left(x\right)=4x^3-\frac{3}{2}x^2-x+10\)

\(P\left(-2\right)=4\cdot\left(-2\right)^3-\frac{3}{2}\cdot\left(-2\right)^2-\left(-2\right)+10\)

\(=4\cdot\left(-8\right)-6+2+10\)

\(=-26\)

* H(x) + Q(x) = P(x)

<=> H(x) = P(x) - Q(x)

H(x) = \(4x^3-\frac{3}{2}x^2-x+10-\left(10-\frac{1}{2}x-2x^2+4x^3\right)\)

        = \(4x^3-\frac{3}{2}x^2-x+10-10+\frac{1}{2}x+2x^2-4x^3\)

        = \(\frac{1}{2}x^2-\frac{1}{2}x\)

* H(x) luôn nguyên với mọi x 

Chỗ này bạn xem lại đề 

a, Ta có : \(P\left(-2\right)=4\left(-2\right)^3-\frac{3}{2}\left(-2\right)^2-\left(-2\right)+10\)

\(=-32.\left(-6\right)+2+10=192+2+10=204\)

b, \(H\left(x\right)+Q\left(x\right)=P\left(x\right)\)

\(H\left(x\right)=P\left(x\right)-Q\left(x\right)\)

\(H\left(x\right)=4x^3-\frac{3}{2}x^2-x+10-10+\frac{1}{2}x+2x^2-4x^3\)

\(=\frac{1}{2}x^2-\frac{1}{2}x\)

29 tháng 3 2023

P(\(x\)) = \(x^4\) - 2\(x^3\) - 3\(x^2\) + 7\(x\) - 2 

Q(\(x\)) = \(x^4\) + \(x^3\) - 2\(x\) + 1

P(\(x\)) + Q(\(x\)) = \(x^4\) - 2\(x^3\) - 3\(x^2\) + 7\(x\)- 2 + \(x^4\) + \(x^3\) - 2\(x\) + 7\(x\) - 2

P(\(x\)) + Q(\(x\)) = ( \(x^4\) + \(x^4\)) - (2\(x^3\) - \(x^3\)) - 3\(x^2\) + ( 7\(x\) - 2\(x\)) - (2-1)

P(\(x\)) +Q(\(x\))   =2 \(x^4\) - \(x^3\) - 3\(x^2\)+ 5\(x\) - 1

P(\(x\)) - Q(\(x\)) = \(x^4\) -2 \(x^3\)-3\(x^2\) +7\(x\) - 2  - \(x^4\) - \(x^3\) +2\(x\) - 1

P(\(x\)) -Q(\(x\))  = (\(x^4\) - \(x^4\)) - (2\(x^3\) + \(x^3\)) - 3\(x^2\) + ( \(7x+2x\)) - ( 2 + 1)

P(\(x\)) -Q(\(x\))   =  - 3\(x^3\) - 3\(x^2\)+ 9\(x\)  - 3 

a: \(P\left(x\right)=3x^2-x-1\)

\(Q\left(x\right)=-3x^2-4x-2\)

b: \(G\left(x\right)=3x^2-x-1+3x^2+4x+2=6x^2+3x+1\)

c: Để G(x)-6x-1=0 thì 6x2-3x=0

=>3x(2x-1)=0

=>x=0 hoặc x=1/2

18 tháng 4 2022

\(P\left(x\right)+Q\left(x\right)=\left(2x^4+x^3-4x+5\right)+\left(x^4+3x^3+2x-1\right)\)

                       \(=2x^4+x^3-4x+5+x^4+3x^3+2x-1\)

                      \(=\left(2x^4+x^4\right)+\left(x^3+3x^3\right)+\left(-4x+2x\right)+\left(5-1\right)\)

                      \(=3x^4+4x^3-2x+4\)

\(R\left(x\right)+P\left(x\right)=x^4-2x^2+1\)

\(\Rightarrow R\left(x\right)=\left(x^4-2x^2+1\right)-P\left(x\right)\)

\(\Rightarrow R\left(x\right)=\left(x^4-2x^2+1\right)-\left(2x^4+x^3-4x+5\right)\)

\(\Rightarrow R\left(x\right)=x^4-2x^2+1-2x^4-x^3+4x-5\)

\(\Rightarrow R\left(x\right)=\left(x^4-2x^4\right)+\left(-2x^2\right)+\left(1-5\right)+\left(-x^3\right)+4x\)

\(\Rightarrow R\left(x\right)=-x^4-2x^2-4-x^3+4x\)

\(P\left(-1\right)=\left(-1\right)^4+2\cdot\left(-1\right)^2+1=1+2+1=4\)

\(P\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}\right)^4+2\cdot\left(\dfrac{1}{2}\right)^2+1=\dfrac{1}{16}+\dfrac{1}{2}+1=\dfrac{9}{16}\)

\(Q\left(-2\right)=\left(-2\right)^4+4\cdot\left(-2\right)^3+2\cdot\left(-2\right)^2-4\cdot\left(-2\right)+1=16-32+8+8+1=1\)

11 tháng 4 2016

miumiu

6 tháng 8 2016

mình khuyên bạn nên đưa lên từng câu một thôi chứ bạn đưa lên dài thế này ai nhìn cũng khong muốn làm đâu nha

BẠN HÃY DÙNG Fx ĐỂ GHI CHO DỄ HIỂU NHÉ BẠN