\(A=x^5y^2+7x^2y^4+5xy^3+xy+2\)

\(B=x^2y^4...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2023

\(A+B\\ =x^5y^2+7x^2y^4+5xy^3+xy+2+x^2y^4+5xy^3+x^5y^2\\ =\left(x^5y^2+x^5y^2\right)+\left(7x^2y^4+x^2y^4\right)+\left(5xy^3+5xy^3\right)+xy+2\\ =2x^5y^2+8x^2y^4+10xy^3+xy+2\)

`@` `\text {Ans}`

`\downarrow`

`A + B`

`= (x^5y^2 + 7x^2y^4 + 5xy^3 + xy + 2) + (x^2y^4 + 5xy^3 + x^5y^2)`

`= x^5y^2 + 7x^2y^4 + 5xy^3 + xy + 2 + x^2y^4 + 5xy^3 + x^5y^2`

`= (x^5y^2 + x^5y^2) + (7x^2y^4+ x^2y^4) + (5xy^3+ 5xy^3) + xy + 2`

`= 2x^5y^2 + 8x^2y^4 + 10xy^3 + xy + 2`

25 tháng 7 2021

a, mình nghĩ đề là cm đẳng thức nhé 

\(VT=\left(5x^4-3x^3+x^2\right):3x^2=\frac{5x^4}{3x^2}-\frac{3x^3}{3x^2}+\frac{x^2}{3x^2}=\frac{5}{3}x^2-x+\frac{1}{3}=VP\)

Vậy ta có đpcm 

b, \(VT=\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)=\frac{5xy^2}{-xy}+\frac{9xy}{-xy}-\frac{x^2y^2}{-xy}\)

\(=-5y-9+xy=VP\)

Vậy ta có đpcm 

c, \(VT=\left(x^3y^3-x^2y^3-x^3y^2\right):x^2y^2=\frac{x^3y^3}{x^2y^2}-\frac{x^2y^3}{x^2y^2}-\frac{x^3y^2}{x^2y^2}=xy-y-x=VP\)

Vậy ta có đpcm 

21 tháng 7 2018

\(a,\dfrac{6x^2y^2}{8xy^5}=\dfrac{2x}{4y^3}\)

\(b,\dfrac{x^2-xy}{5xy-5y^2}=\dfrac{x\left(x-y\right)}{5y\left(x-y\right)}\)

\(c,\dfrac{x^3-x}{3x+3}=\dfrac{x\left(x^2-1\right)}{3\left(x^2+1\right)}=\dfrac{x\left(x-1\right)\left(x+1\right)}{3\left(x+1\right)}=\dfrac{x\left(x-1\right)}{3}\)

21 tháng 7 2018

a) \(\dfrac{6x^2y^2}{8xy^5}=\dfrac{3x}{4y^3}\)

b) \(\dfrac{x^2-xy}{5xy-5y^2}=\dfrac{x\left(x-y\right)}{5y\left(x-y\right)}=\dfrac{x}{5y}\)

c) \(\dfrac{x^3-x}{3x+3}=\dfrac{x\left(x^2-1\right)}{3\left(x+1\right)}=\dfrac{x\left(x+1\right)\left(x-1\right)}{3\left(x+1\right)}=\dfrac{x\left(x-1\right)}{3}\)

d. \(\left(x-3y\right)\left(3x^2+y^2+5xy\right)\)

\(=3x^3+xy^2+5x^2y-9x^2y-3y^3-15xy^2\)

\(=3x^3-14xy^2-4x^2y-3y^3\)

Bài 2:

a. \(x^2-y^2-5x+5y\)

\(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)

\(=\left(x+y-5\right)\left(x-y\right)\)

b. \(x^3-x^2-4x^2+8x-4\)

\(=x^2\left(x-1\right)-4\left(x^2-2x+1\right)\)

\(=x^2\left(x-1\right)-4\left(x-1\right)^2\)

\(=\left(x-1\right)\left[x^2-4\left(x-1\right)\right]\)

\(=\left(x-1\right)\left(x^2-4x+4\right)\)

\(=\left(x-1\right)\left(x-2\right)^2\)

Bài 3:

\(87^2+26.87+13^2\)

\(=\left(87+ 13\right)^2\)

\(=100^2\)

\(=10000\)

Bài 1:

a. \(3x^2\left(5x^2-4x+3\right)\)

\(=15x^4-12x^3+9x^2\)

b. \(-5xy\left(3x^2y-5xy-y^2\right)\)

\(=-15x^3y^2+25x^2y^2+5xy^3\)

c. \(\left(5x^2-4x\right)\left(x-3\right)\)

\(=5x^3-19x^2-4x^2+12x\)

Câu 2 nha

\(a,x^4+2x^3+x^2\)

\(=x^2\left(x^2+2x+1\right)\)

\(=x^2\left(x+1\right)^2\)

\(c,x^2-x+3x^2y+3xy^2+y^3-y\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)

AH
Akai Haruma
Giáo viên
29 tháng 3 2020

Lời giải:

a) \(\frac{45x(3-x)}{15(x-3)^3}=\frac{-45x(x-3)}{15(x-3)^3}=\frac{-3x}{(x-3)^2}\)

b) \(\frac{36(x-2)^3}{32-16x}=\frac{36(x-2)^3}{-16(x-2)}=\frac{-9}{4}(x-2)^2\)

c) \(\frac{x^2-xy}{5y^2-5xy}=\frac{x(x-y)}{-5y(x-y)}=\frac{x}{-5y}\)

d) \(\frac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}=\frac{-(x^2-y^2)}{(x-y)^3}=\frac{-(x-y)(x+y)}{(x-y)^3}=\frac{-(x+y)}{(x-y)^2}\)

`@` `\text {Ans}`

`\downarrow`

`A - B`

`= (x^5y^2 + 7x^2y^4 + 5xy^3 + xy + 2) - (x^2y^4 + 5xy^3 + x^5y^2)`

`= x^5y^2 + 7x^2y^4 + 5xy^3 + xy + 2 - x^2y^4 - 5xy^3 - x^5y^2`

`= (x^5y^2 - x^5y^2) + (7x^2y^4 - x^2y^4) + (5xy^3 - 5xy^3) + xy + 2`

`= 6x^2y^4 + xy + 2`

7 tháng 11 2018

Bài 1:

a) \(\dfrac{16-\left(x+3\right)^2}{x^2-2x+1}\)

\(=\dfrac{\left(4-x-3\right)\left(4+x+3\right)}{\left(x-1\right)^2}\)

\(=\dfrac{\left(1-x\right)\left(x+7\right)}{\left(1-x\right)^2}\)

\(=\dfrac{x+7}{1-x}\)

b) \(\dfrac{x^2+4x+4}{x^2+5x+6}\)

\(=\dfrac{\left(x+2\right)^2}{x^2+2x+3x+6}\)

\(=\dfrac{\left(x+2\right)^2}{x\left(x+2\right)+3\left(x+2\right)}\)

\(=\dfrac{\left(x+2\right)^2}{\left(x+2\right)\left(x+3\right)}\)

\(=\dfrac{x+2}{x+3}\)

Bài 2:

a) \(\dfrac{3xy+6}{6xy+12}\)

\(=\dfrac{3\left(xy+2\right)}{6\left(xy+2\right)}\)

\(=\dfrac{3}{6}\)

\(=\dfrac{1}{2}\left(Đpcm\right)\)

b) \(\dfrac{x^2-xy}{5y^2-5xy}\)

\(=\dfrac{x\left(x-y\right)}{5y\left(y-x\right)}\)

\(=\dfrac{-x\left(y-x\right)}{5y\left(y-x\right)}\)

\(=-\dfrac{x}{5y}\)

Chỗ này hình như ghi sai đề

23 tháng 12 2019

Ta có :

\(\frac{6x^2y^2}{8xy^5}=\frac{3x}{4y^3}\)

\(\frac{x^2-xy}{5xy-5y^2}=\frac{x\left(x-y\right)}{5y\left(x-y\right)}=\frac{x}{5y}\)

Hok tốt !