\(f\left(x\right)=2x^2+ax+4\) \(và\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

f(1)=g(2)

=>\(2\cdot1^2+a\cdot1+4=2^2-5\cdot2-b\)

=>\(a+6=-b-6\)

=>a+b=-12(1)

f(-1)=g(5)

=>\(2\cdot\left(-1\right)^2+a\cdot\left(-1\right)+4=5^2-5\cdot5-b\)

=>\(2-a+4=-b\)

=>6-a=-b

=>a-b=6(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}a-b=6\\a+b=-12\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=\dfrac{-12+6}{2}=-3\\b=-12-a=-12-\left(-3\right)=-9\end{matrix}\right.\)

1 tháng 5 2018

Thay F(1) với x =1 vào thôi 

G(2) cũng vậy thay x=2 vào rồi cho 2 cái bằng nhau là tìm ra a 

1 tháng 5 2018

Ta có \(f\left(1\right)=g\left(2\right)\)

=> \(2+a+4=4-20-b\)

=> \(\left(2+a+4\right)-\left(4-20-b\right)=0\)

=> \(2+a+4-4+20+b=0\)

=> \(22+a+b=0\)

=> \(a+b=-22\)(1)

và \(f\left(-1\right)=g\left(5\right)\)

=> \(2-a+4=25-25-b\)

=> \(2-a+4=-b\)

=> \(2+4=a-b\)

=> \(a-b=6\)

=> \(a=6+b\)(2)

Thế (2) vào (1), ta có: \(6+b+b=-22\)

=> \(2b=-28\)

=> \(b=-14\)

và \(a=6+b=6-14=-8\)

16 tháng 4 2018

ta có: F(1) = G(2)

\(\Rightarrow2.1^2+a.1+4=2^2-5.2-b\)

\(2+a+4=4-10-b\)

\(6+a=-6-b\)

\(\Rightarrow a+b=-6-6\)

\(a+b=-12\Rightarrow a=-12-b\)

ta có: F(-1) = G(5)

\(\Rightarrow2.\left(-1\right)^2+a.\left(-1\right)+4=5^2-5.5-b\)

\(2-a+4=25-25-b\)

\(6-a=-b\)

\(\Rightarrow6-\left(-12-b\right)=-b\)

\(6+12+b=-b\)

\(b+b=-6-12\)

\(2b=-18\)

\(b=\left(-18\right):2\)

\(b=-9\)

\(\Rightarrow a+\left(-9\right)=-12\)

\(a=\left(-12\right)-\left(-9\right)\)

\(a=-3\)

KL:  a= -3 ; b= -9

Chúc bn học tốt !!!!!

AH
Akai Haruma
Giáo viên
1 tháng 6 2019

Lời giải:
\(\left\{\begin{matrix} f(1)=g(2)\\ f(-1)=g(5)\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2.1^2+a.1+4=2^2-5.2-b\\ 2(-1)^2-a+4=5^2-5.5-b\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a+b=-12\\ a-b=6\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=-3\\ b=-9\end{matrix}\right.\)

Vậy...........

5 tháng 7 2019

em cảm ơn cô

5 tháng 5 2019

tham khảo 

https://olm.vn/hoi-dap/detail/68987022286.html

5 tháng 5 2019

0,3 x y + y = 6,5

6 tháng 5 2017

Ta có: \(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a\cdot2^2+2b+c=4a+2b+c\\f\left(-5\right)=a\cdot\left(-5\right)^2-5b+c=25a-5b+c\end{matrix}\right.\)

\(\Rightarrow f\left(2\right)\cdot f\left(-5\right)=\left(4a+2b+c\right)\left(25a-5b+c\right)\)

Lại có:\(25a-5b+c=29a+2c-c-4a-5b\)

\(=3b-c-4a-5b=-2b-c-4a=-\left(4a+2b+c\right)\)

\(\Rightarrow f\left(2\right)\cdot f\left(-5\right)=-\left(4a+2b+c\right)\left(4a+2b+c\right)\)

\(=-\left(4a+2b+c\right)^2\le0\forall a,b,c\)

7 tháng 5 2017

=> Q(2)=a2^2+2b+c=4a+2b+c

Q(-1)=a(-1)^2+(-1)b+c=a-b+c

Ta có: 4a+2b+c=5a+b+2c-a+b-c=0-a+b-c=-a+b-c

=>Q(2).Q(-1)=(4a+2b+c).(a-b+c)=(-a+b-c).(a-b+c)=-(a-b+c).(a-b+c)≤ 0 với mọi a,b,c

12 tháng 8 2016

bài 1

a) \(-\frac{1}{3}xy\).(3\(x^2yz^2\))

=\(\left(-\frac{1}{3}.3\right)\).\(\left(x.x^2\right)\).(y.y).\(z^2\)

=\(-x^3\).\(y^2z^2\)

b)-54\(y^2\).b.x

=(-54.b).\(y^2x\)

=-54b\(y^2x\)

c) -2.\(x^2y.\left(\frac{1}{2}\right)^2.x.\left(y^2.x\right)^3\)

=\(-2x^2y.\frac{1}{4}.x.y^6.x^3\)

=\(\left(-2.\frac{1}{4}\right).\left(x^2.x.x^3\right).\left(y.y^2\right)\)

=\(\frac{-1}{2}x^6y^3\)

 

 

12 tháng 8 2016

Bài 3:

a) \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)

\(f\left(x\right)=\left(5x^4-x^4\right)-\left(9x^3+7x^3\right)-\left(15x^2+4x^2-8x^2\right)+15\)

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

b) 

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)

\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)

\(f\left(1\right)=-8\)

 

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

\(f\left(-1\right)=4\cdot\left(-1\right)^4-16\cdot\left(-1\right)^3-11\cdot\left(-1\right)^2+15\)

\(f\left(-1\right)=24\)

29 tháng 3 2021

Vì đa thức g(x) là đa thức bậc 3 và mọi nghiệm của f(x) cũng là của g(x) nên:

G/s \(g\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-c\right)\) \(\left(c\inℝ\right)\)

Khi đó: \(x^3-ax^2+bx-3=\left(x-1\right)\left(x+3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=\left(x^2+2x-3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=x^3-\left(c-2\right)x^2-\left(2c+3\right)x+3c\)

Đồng nhất hệ số ta được:

\(\hept{\begin{cases}a=c-2\\b=-2c-3\\c=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\\c=-1\end{cases}}\)

Vậy a = -3 , b = -1

30 tháng 3 2021

đồng nhất hệ số mình chưa học nha

6 tháng 5 2018

C1:Chương IV : Biểu thức đại số

6 tháng 5 2018

C2: Có sai sót j mong bn thông cảm! Viết hơi ẩu ☺Chương IV : Biểu thức đại số