Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Ta có: \(M\left(x\right)=6x^3+2x^4-x^2+3x^2-2x^3-x^4+1-4x^3\)
\(=x^4+2x^2+1\)
\(=\left(x^2+1\right)^2\ge1\forall x\)
hay M(x) vô nghiệm(đpcm)
Câu 2:
Ta có: A(0)=5
\(\Leftrightarrow m+n\cdot0+p\cdot0\cdot\left(0-1\right)=5\)
\(\Leftrightarrow m=5\)
Ta có: A(1)=-2
\(\Leftrightarrow m+n\cdot1+p\cdot1\cdot\left(1-1\right)=-2\)
\(\Leftrightarrow5+n=-2\)
hay n=-2-5=-7
Ta có: A(2)=7
\(\Leftrightarrow5+\left(-7\right)\cdot2+p\cdot2\cdot\left(2-1\right)=7\)
\(\Leftrightarrow-9+2p=7\)
\(\Leftrightarrow2p=16\)
hay p=8
Vậy: Đa thức A(x) là 5-7x+8x(x-1)
\(=5-7x+8x^2-8x\)
\(=8x^2-15x+5\)
Vì x^4 ≥ 0
3x^2 ≥ 0
⇒ x^4+3x^2 ≥ 0
⇒ x^4+3x^2+3 ≥ 0 > 3
⇒Đa thức trên k có nghiệm
Xét P(x)=x4+3x2+3
Ta có
x4>=0 vs mọi x
3x2>=0 vs mọi x
=>x4+3x2 +3>= 0 vs mọi x
=>đa thức trên vô nghiệm
=>đfcm
Bài 1: 2008^5 - 2009.2008^4+2009.2008^3 - 2009.2008^2+2009.2008-2010
= 2008^5-(2008.2008^4-1.2008^4)+(2008.2008^3+1.2008^3)+(2008.2008^2-1.2008^2)+(2008.2008-1.2008)-2010
= 2008^5-(2008^5-2008^4)+(2008^4+2008^3)+(2008^3-2008^2)+ (2008^2+2008)-2010
= (2008^5-2008^5) + (-2008^4+2008^4)+ (2008^3-2008^3)+(-2008^2-2008^2)+(2008-2010)
=0+0+0+0+(-2)
=2
Tick mik nha!!!!
\(\left\{{}\begin{matrix}P\left(x\right)=x+x^2-x^3+2x^3+2=x^3+x^2+x+2\\Q\left(x\right)=1+3x-x^2-4x+x^3=x^3-x^2-x+1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}P\left(x\right)+Q\left(x\right)=2x^3+3\\P\left(x\right)-Q\left(x\right)=2x^2+2x+1\end{matrix}\right.\)
a) Thu gọn và sắp xếp:
f(x)= \(5x^4-4x^3-2x^2-9x+7\)
g(x)=\(-5x^4+4x^3+3x^2+9x-11\)
b) f(x) + g(x)= \(5x^4-4x^3-2x^2-9x+7\) + ( \(-5x^4+4x^3+3x^2+9x-11\))
= \(5x^4-4x^3-2x^2-9x+7\) \(-5x^4+4x^3+3x^2+9x-11\)
= \(5x^4-5x^4-4x^3+4x^3-2x^2+3x^2+7-11\)
= \(x^2-4\)
Vậy H(x) = \(x^2-4\)
f(x) - g(x)= \(5x^4-4x^3-2x^2-9x+7\) - ( \(-5x^4+4x^3+3x^2+9x-11\))
= \(5x^4-4x^3-2x^2-9x+7\) \(+5x^4-4x^3-3x^2-9x+11\)
= \(5x^4+5x^4-4x^3-4x^3-2x^2-3x^2-9x-9x+7+11\)
= \(10x^4-8x^3-5x^2-18x+18\)
Vậy P(x) = \(10x^4-8x^3-5x^2-18x+18\)
c) Đa thức H(x) có nghiệm khi:
\(x^2-4=0\)
x.x-4=0
x.x=4
\(x^2\) =4
=> x= \(\pm2\)
Vậy x=2 hoặc x=-2 là nghiệm của đa thức H(x)
trong sản xuất, con người đã làm gì để tận dụng sự đa đạng của điều kiện môi trường sống.
mọi người giúp em với, mai em thi rồi
1a, M(x)=\(x^4+x^2+1\)
b,M(-1)=(-1)\(^4\)+(-1)\(^2\)+1
=3
M(1)=(1)\(^4\)+(1)\(^2\)+1
=3
2a,P(x)=\(6x^4-3x^3+2x^2+2010\)
Q(x)=\(-3x^4+2x^3-5x^2-2011\)
b,P(x)+Q(x)=6x\(^4\)-3x\(^3\)+2x\(^2\)+2010-3x\(^4\)+2x\(^3\)-5x\(^2\)-2011
=(6x\(^4\)-3x\(^4\))+(-3x\(^3\)+2x\(^3\))+(2x\(^2\)-5x\(^2\))+(2010-2011)
= 3x\(^4\)-x\(^3\)-3x\(^2\)-1
P(x)-Q(x)=(6x\(^4\)-3x\(^3\)+2x\(^2\)+2010)-(-3x\(^4\)+2x\(^3\)-5x\(^2\)-2011)
=6x\(^4\)-3x\(^3\)+2x\(^2\)+2010+3x\(^4\)-2x\(^3\)+5x\(^2\)+2011
=(6x\(^4\)+3x\(^4\))+(-3x\(^3\)-2x\(^3\))+(2x\(^2\)+5x\(^2\))+(2010+2011)
= \(9x^4-5x^3+7x^2+4021\)
3a,P(x)=0<=>4x-1/2=0<=>4x=1/2<=>x=1/8
vậy 1/8 là n\(_o\) của P(x)
b,Q(x)=0<=>(x-1)(x+1)=0
<=>\(\left\{{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
vậy 1 và -1 là n\(_o\) của Q(x)
c,A(x)=0<=>-12x+18=0<=>-12x=-18<=>x=3/2
vậy 3/2 là n\(o\) của A(x)
d,B(x)=0<=>\(-x^2+16\)=0<=>-x\(^2\)=16<=>-(x)\(^2\)=-(\(\pm\)4)\(^2\)
<=>x=\(\pm\)4
vậy \(\pm\)4 là n\(_o\)củaB(x)
e,C(x)=0<=>3x\(^2\)+12=0<=>3x\(^2\)=-12<=>x\(^2\)=-4<=>x\(^2\)=-(4)\(^2\)
<=>x=4
vậy 4 là n\(_o\) của C(x)