Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét x=2 ta có
f(2)=4(m-1)-6m+2=0
<=> -2m-2=0
<=> m=-1
Vậy m=-1 thì..............
Bài 3 :
1. Thay x = -5 vào f(x) ta được :
\(\left(-5\right)^2-4\left(-5\right)+5=50\)
Vậy x = -5 không là nghiệm của đa thức trên .
Bài 2 :
1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)
=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)
=> \(f_{\left(x\right)}=x^2+4\)
=> \(x^2+4=0\)
Vậy đa thức trên vô nghiệm .
2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)
=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)
=> \(g_{\left(x\right)}=0\)
Vậy đa thức trên vô số nghiệm .
3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)
=> \(h_{\left(x\right)}=x^2-x+1\)
=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)
Vậy đa thức vô nghiệm .
Bài 3:
\(f\left(x\right)=x^2+4x-5.\)
+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:
\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)
\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)
\(\Rightarrow f\left(x\right)=25-20-5\)
\(\Rightarrow f\left(x\right)=5-5\)
\(\Rightarrow f\left(x\right)=0.\)
Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)
Chúc bạn học tốt!
a/ \(f\left(-\dfrac{1}{2}\right)=4.\left(-\dfrac{1}{2}\right)^2+3.\left(-\dfrac{1}{2}\right)-2\)
\(=4\cdot\dfrac{1}{4}-\dfrac{3}{2}-2=1-\dfrac{3}{2}-2=-\dfrac{5}{2}\)
b/
\(f\left(x\right)+g\left(x\right)-h\left(x\right)=4x^2+3x-2+x^2+2x+3-5x^2+2x-8\)
\(=\left(4x^2+x^2-5x^2\right)+\left(3x+2x+2x\right)+\left(-2+3-8\right)\)
\(=7x-7\)
Ta có: \(f\left(x\right)+g\left(x\right)-h\left(x\right)=7x-7=0\)
\(\Leftrightarrow7x=7\Rightarrow x=1\)
Vậy để...............
c/ \(g\left(x\right)=x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\)
Vì \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+2\ge2\)
hay \(\left(x+1\right)^2+2>0\)
\(\Rightarrow g\left(x\right)\) vô nghiệm (đpcm)
a: f(-1)=g(2)
nên \(-1-m-1+2m+m^2-1=12m+13m+m^2-3\)
\(\Leftrightarrow25m-3=m-3\)
=>m=0
b: \(s\left(x\right)=f\left(x\right)+g\left(x\right)=x^3+x^2\left(3m-m-1\right)+x\left(-2m+\dfrac{13}{2}m\right)+m^2-1+m^2-3\)
\(=x^3+\left(2m-1\right)x^2+\dfrac{9}{2}mx+2m^2-4\)
Vì m=1 nên \(s\left(x\right)=x^3+x^2+\dfrac{9}{2}x-2\)
Khi x=1 thì \(s=1+1+\dfrac{9}{2}-2=\dfrac{9}{2}\)
Khi x=-1 thì \(s=-1+1-\dfrac{9}{2}-2=-\dfrac{13}{2}\)