...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2021

a, Với \(x\ge0;x\ne4;9\)

\(Q=\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}+\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}\)

\(=\frac{\sqrt{x}+2+x-9-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{1}{\sqrt{x}-2}\)

b,\(A=\frac{P}{Q}\Rightarrow\frac{1}{\sqrt{x}+1}.\left(\sqrt{x}-2\right)=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)

\(\Rightarrow A< 0\)vì \(\left|A\right|\ge0\Rightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}< 0\Rightarrow\sqrt{x}-2< 0\Leftrightarrow x< 4\)

Kết hợp với đk vậy  \(0\le x< 4\)mà x phải là số nguyên tố => x = 1 ; x = 3 

15 tháng 8 2021

đúng nha bạn 

19 tháng 8 2021
Bài 1. a) A=7/6
19 tháng 8 2021
b) √x+1 /(√x +2)(√x-1)
27 tháng 9 2019

câu a rút gọn

M = \(\frac{\sqrt{a}-1}{\sqrt{a}}\)

Bài 1:Tính giá trị các biểu thứca)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)a) Rút gọn biểu thức Ab) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)Bài 3 : Cho...
Đọc tiếp

Bài 1:Tính giá trị các biểu thức

a)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)

b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)

c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)

d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        

Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)

a) Rút gọn biểu thức A

b) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)

Bài 3 : Cho biểu thức \(A=\frac{\sqrt{x-1-2\sqrt{x-2}}}{\sqrt{x-2}-1}\)

a) Tìm điều kiện của \(x\)để \(A\)có nghĩa

b) Rút gọn \(A\)

c) Tính \(A\)khi\(x=\sqrt{2013}\)

Bài 4 : Cho biểu thức \(A=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\frac{x-y}{\sqrt{x}-\sqrt{y}}\)

a) Đặt điều kiện để biểu thức \(A\)có nghĩa

b) Rút gọn biểu thức \(A\)

Mấy bạn giúp mình giải với nha, mình đang cần gấp . Mình cảm ơn ạ <3

0
5 tháng 10 2020

\(P=\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{4-6\sqrt{a}}{1-a}-\frac{-3}{\sqrt{a}+1}\)

ĐK : \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)

a) \(P=\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{4-6\sqrt{a}}{a-1}+\frac{3}{\sqrt{a}+1}\)

\(=\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{4-6\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{3}{\sqrt{a}+1}\)

\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{4-6\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{3\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\frac{a+\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{4-6\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{3\sqrt{a}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\frac{a+\sqrt{a}+4-6\sqrt{a}+3\sqrt{a}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\frac{a-2\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\frac{\sqrt{a}-1}{\sqrt{a}+1}\)

Với \(a=4-2\sqrt{3}\)( tmđk \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\))

\(P=\frac{\sqrt{4-2\sqrt{3}}-1}{\sqrt{4-2\sqrt{3}}+1}\)

\(=\frac{\sqrt{3-2\sqrt{3}+1}-1}{\sqrt{3-2\sqrt{3}+1}+1}\)

\(=\frac{\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1^2}-1}{\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1^2}+1}\)

\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}-1}{\sqrt{\left(\sqrt{3}-1\right)^2}+1}\)

\(=\frac{\left|\sqrt{3}-1\right|-1}{\left|\sqrt{3}-1\right|+1}\)

\(=\frac{\sqrt{3}-1-1}{\sqrt{3}-1+1}=\frac{\sqrt{3}-2}{\sqrt{3}}\)

b) \(P=\frac{\sqrt{a}-1}{\sqrt{a}+1}=\frac{\sqrt{a}+1-2}{\sqrt{a}+1}=1-\frac{2}{\sqrt{a}+1}\)( ĐK \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\))

Để P đạt giá trị nguyên => \(\frac{2}{\sqrt{a}+1}\)nguyên

=> \(2⋮\sqrt{a}+1\)

=> \(\sqrt{a}+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

=> \(\sqrt{a}\in\left\{0;1\right\}\)< đã loại hai trường hợp âm >

=> \(a\in\left\{0\right\}\)< loại trường hợp a = 1 >

Vậy với a = 0 thì P có giá trị nguyên

3 tháng 10 2020

a) \(M=\frac{x+1+\sqrt{x}}{x+1}:\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\sqrt{x}\left(x+1\right)-\left(x+1\right)}\right)\)

\(=\frac{x+\sqrt{x}+1}{x+1}:\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{x+\sqrt{x}+1}{x+1}:\frac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\)\(=\frac{x+\sqrt{x}+1}{x+1}.\frac{\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2}=\frac{x+\sqrt{x}+1}{\sqrt{x}-1}\)

b) \(M>3\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}-1}>3\Leftrightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}-1}-3>0\)

\(\Leftrightarrow\frac{x+\sqrt{x}+1-3\left(\sqrt{x}-1\right)}{\sqrt{x}-1}>0\Leftrightarrow\frac{x+\sqrt{x}+1-3\sqrt{x}+3}{\sqrt{x}-1}>0\)\(\Leftrightarrow\frac{x-2\sqrt{x}+4}{\sqrt{x}-1}>0\)

Ta có: \(x-2\sqrt{x}+4=x-2\sqrt{x}+1+3=\left(\sqrt{x}-1\right)+3>0\)\(\Rightarrow\sqrt{x}-1>0\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)

Vậy x>1

3 tháng 10 2020

c) \(M=7\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}-1}=7\Rightarrow x+\sqrt{x}+1=7\left(\sqrt{x}-1\right)\)

\(\Leftrightarrow x+\sqrt{x}+1=7\sqrt{x}-7\Leftrightarrow x-6\sqrt{x}+8=0\)\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\\sqrt{x}-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=16\end{cases}\left(tm\right)}}\)

Vậy \(x\in\text{{}4;16\)

23 tháng 6 2018

a) Ta có: \(A=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}.\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}.\frac{\sqrt{2x}-x-1}{\sqrt{x}-1}\)

\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}.\frac{1-2\sqrt{x}+x}{1-\sqrt{x}}\)

\(=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}.\frac{\left(1-\sqrt{x}\right)^2}{1-\sqrt{x}}\)

\(=\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)\)

\(=1^2-\left(\sqrt{x}\right)^2=1-x\).

Vậy \(A=1-x\).

b) Ta có: \(A=1-x\)

Để \(A>0\)\(\Rightarrow1-x>0\Rightarrow1-0>x\Rightarrow1>x\Rightarrow x< 1.\)

Vậy để A > 0 thì x < 1.

Chúc bn hc tốt!