K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2021

Đặt \(\sqrt{1+x}=a;\sqrt{1-x}=b\)\(a,b>0\)

Áp dụng BĐT AG-GM:

\(\Rightarrow A=\dfrac{a^2+4b^2}{ab}\ge\dfrac{2\sqrt{a^2\cdot4b^2}}{ab}=4\)

Dấu "=" \(\Leftrightarrow1+x=4\left(1-x\right)\Leftrightarrow x=\dfrac{3}{5}\left(N\right)\)

Tick hộ nha

30 tháng 9 2020

hơi ngán dạng này :((((

a, \(x^2-3x+5=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+5=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\forall x\)

b,

\(x^2-\frac{1}{3}x+\frac{5}{4}=x^2-2.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{5}{4}=\left(x-\frac{1}{6}\right)^2+\frac{11}{9}>0\forall x\)

c,

\(x-x^2-3=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{4}-3=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}< 0\forall x\)d,

\(x-2x^2-\frac{5}{2}=-2\left(x^2-\frac{1}{2}x+\frac{5}{4}\right)=-2\left(x^2-2.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}+\frac{5}{4}\right)=-2\left[\left(x-\frac{1}{4}\right)^2+\frac{19}{16}\right]=-2\left(x-\frac{1}{4}\right)^2-\frac{19}{8}< 0\forall x\)P/s : ko chắc lém :)))

2 tháng 10 2020

cảm ơn bạn nhìuuu 💞

11 tháng 3 2020

1) x - 8 = 3 - 2(x + 4)

<=> x - 8 = 3 - 2x - 8

<=> x + 2x = -5 + 8

<=> 3x = 3

<=> x = 1

Vậy S = {1}

2) 2(x + 3) - 3(x - 1) = 2

<=> 2x + 6 - 3x + 3 = 2

<=> -x = 2 - 9

<=> -x = -7

<=> x = 7

Vậy S = {7}

3) 4(x - 5) - (3x - 1) = x - 19

<=> 4x - 20 - 3x + 1 = x - 19

<=> x - 19 = x - 19

<=> x - x = -19 + 19

<=> 0x = 0

=> pt luôn đúng với mọi x

4) 7 - (x - 2) = 5(2x - 3)

<=> 7 - x + 2 = 10x + 15

<=> -x - 10x = 15 - 9

<=> -11x = 6

<=> x = -6/11

Vậy S = {-6/11}

11 tháng 3 2020

\(5,32-4\left(0,5y-5\right)=3y+2\)

\(\Leftrightarrow32-2y+20-3y-2=0\)

\(\Leftrightarrow-5y+50=0\Leftrightarrow y=10\)

\(6,3\left(x-1\right)-x=2x-3\)

\(\Leftrightarrow3x-3-x-2x+3=0\)

\(\Leftrightarrow0=0\) (luôn đúng )

=> pt vô số nghiệm

\(7,2x-4=-12+3x\)

\(\Leftrightarrow-x=-8\Leftrightarrow x=8\)

\(8,x\left(x-1\right)-x\left(x+3\right)=15\)

\(\Leftrightarrow x^2-x-x^2-3x-15=0\)

\(\Leftrightarrow-4x-15=0\Leftrightarrow x=\frac{-15}{4}\)

\(9,x\left(x-1\right)=x\left(x+3\right)\)

\(\Leftrightarrow x^2-x-x^2-3x=0\Leftrightarrow-4x=0\Leftrightarrow x=0\)

\(10,x\left(2x-3\right)+2=x\left(x-5\right)-1\)

\(\Leftrightarrow2x^2-3x+2-x^2+5x+1=0\)

\(\Leftrightarrow x^2+2x+3=0\) (vô lý)

=> pt vô nghiệm

\(11,\left(x-1\right)\left(x+3\right)=-4\)

\(\Leftrightarrow x^2+2x-3+4=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

\(12,\left(x-2\right)\left(x-5\right)=\left(x-3\right)\left(x-4\right)\)

\(\Leftrightarrow x^2-7x+10=x^2-7x+12\)

\(\Leftrightarrow10=12\) (vô lý)=> pt vô nghiệm

28 tháng 6 2017

a) x2 - 7x + 16
= (x2 - 2x\(\frac{7}{2}\)\(\frac{49}{4}\)) + \(\frac{15}{4}\)
= (x - \(\frac{7}{2}\))2 + \(\frac{15}{4}\)> 0
b) 3x2 - 3x + 1
= [\(\left(\sqrt{3x^2}\right)^2\)- 2.\(\sqrt{3x^2}\).\(\frac{\sqrt{3}}{2}\)\(\frac{3}{4}\)] + \(\frac{1}{4}\)
= (\(\sqrt{3x^2}\)\(\frac{\sqrt{3}}{2}\))2 + \(\frac{1}{4}\)> 0
c) -x2 + 3x - 5
= -(x2 - 3x + 5)
= -(x2 - 2x\(\frac{3}{2}\)\(\frac{9}{4}\)+\(\frac{11}{4}\))
= -[(x - \(\frac{3}{2}\))2 + \(\frac{11}{4}\)] < 0
d) Câu này sai đề rồi bạn ơi