K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

TC \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)^3=-\frac{1}{z^3}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)=-\frac{1}{z^3}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\left(do\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\right)\)

thay vào \(xyz.\frac{3}{xyz}=3\)

6 tháng 4 2019

Với x ; y > 0 , cần c/m : \(x^3+y^3\ge xy\left(x+y\right)\)

Ta có : \(x^3+y^3-xy\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2-xy\right)=\left(x+y\right)\left(x-y\right)^2\ge0\)

( điều này luôn đúng với mọi x ; y > 0 )

=> BĐT được c/m

Áp dụng vào bài toán , ta có :

\(\frac{1}{x^3+y^3+xyz}+\frac{1}{y^3+z^3+xyz}+\frac{1}{x^3+z^3+xyz}\le\frac{1}{xy\left(x+y\right)+xyz}+\frac{1}{yz\left(y+z\right)+xyz}+\frac{1}{xz\left(x+z\right)+xyz}=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}=\frac{x+y+z}{xyz\left(x+y+z\right)}=\frac{1}{xyz}\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z;x,y,z>0\)

16 tháng 6 2018

Ta có : 

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow\)\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^3=0^3\)

\(\Leftrightarrow\)\(\left(\frac{1}{x}\right)^3+\left(\frac{1}{y}\right)^3+\left(\frac{1}{z}\right)^3+3\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{z}+\frac{1}{x}\right)=0\)

\(\Leftrightarrow\)\(\frac{1^3}{x^3}+\frac{1^3}{y^3}+\frac{1^3}{z^3}=-3\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{z}+\frac{1}{x}\right)\)

Lại có : 

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{-1}{z}\\\frac{1}{y}+\frac{1}{z}=\frac{-1}{x}\\\frac{1}{z}+\frac{1}{x}=\frac{-1}{y}\end{cases}}\)

\(\Leftrightarrow\)\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\left(-3\right).\frac{-1}{z}.\frac{-1}{x}.\frac{-1}{y}\)

\(\Leftrightarrow\)\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\) ( đpcm ) 

Vậy nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) thì \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

Chúc bạn học tốt ~ 

16 tháng 6 2018

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{-1}{z}\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)^3=\left(-\frac{1}{z}\right)^3\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{x^2y}+\frac{3}{xy^2}=-\frac{1}{z^3}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{-3}{x^2y}-\frac{3}{xy^2}=\frac{-3}{xy}.\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{-3}{xy}.-\frac{1}{z}=\frac{3}{xyz}\)

17 tháng 4 2016

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

=>\(\frac{1}{z}=-\left(\frac{1}{x}+\frac{1}{y}\right)\)

=>\(\left(\frac{1}{z}\right)^3=\left[-\left(\frac{1}{x}+\frac{1}{y}\right)\right]^3\)

=>\(\frac{1}{z^3}=-\left[\left(\frac{1}{x}+\frac{1}{y}\right)^3\right]\)

=>\(\frac{1}{z^3}=-\left[\left(\frac{1}{x}\right)^3+3.\left(\frac{1}{x}\right)^2.\frac{1}{y}+3.\frac{1}{x}.\left(\frac{1}{y}\right)^2+\left(\frac{1}{y}\right)^3\right]\)

=>\(\frac{1}{z^3}=-\left[\frac{1}{x^3}+3.\frac{1}{x}.\frac{1}{y}.\frac{1}{x}+3.\frac{1}{x}.\frac{1}{y}.\frac{1}{y}+\frac{1}{y^3}\right]\)

=>\(\frac{1}{z^3}=-\left[\frac{1}{x^3}+3.\frac{1}{x}.\frac{1}{y}.\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{1}{y^3}\right]\)

=>\(\frac{1}{z^3}=-\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\left\{-\left[3.\frac{1}{x}.\frac{1}{y}.\left(\frac{1}{x}+\frac{1}{y}\right)\right]\right\}\)

\(\frac{1}{z^3}-\left[-\left(\frac{1}{x^3}+\frac{1}{y^3}\right)\right]=-\left[3.\frac{1}{x}.\frac{1}{y}.\left(\frac{1}{x}+\frac{1}{y}\right)\right]\)

Vì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0=>\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)

=>\(\frac{1}{z^3}+\frac{1}{x^3}+\frac{1}{y^3}=-3.\frac{1}{x}.\frac{1}{y}.\left(-\frac{1}{z}\right)\)

=>\(\frac{1}{z^3}+\frac{1}{x^3}+\frac{1}{y^3}=3.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}\)

=>\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=3.\frac{1}{xyz}\)

=>\(xyz.\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=3\)

=>A=3

Vậy A=3