K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2020

Ta có a^5-a luôn chia hết cho 6

suy ra a^5+...+d^5 -2016 chia hết cho 6

dpcm

14 tháng 10 2020

1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1

Thay vào ab=cd được ka1b=bc1d nên

a1b=c1d  (1)

Ta có: a1\(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m =  c1d nên a1m=d

Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)

\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)

Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)

14 tháng 10 2020

2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.

Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.

Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)

b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)

Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???

2 tháng 12 2017

\(a^5+b^5+c^5-\left(a+b+c\right)\)

\(=\left(a^5-a\right)+\left(b^5-b\right)+\left(c^5-c\right)\)

\(=a\left(a^4-1\right)+b\left(b^4-1\right)+c\left(c^4-1\right)\)

Ta có : \(A=a\left(a^4-1\right)=a\left(a-1\right)\left(b+1\right)\left(a^2+1\right)=a\left(a-1\right)\left(b+1\right)\left(a^2-4+5\right)\)

Ta thấy \(a\left(a-1\right)\left(a+1\right)\) là tích 3 số nguyên liên tiếp \(\Rightarrow a\left(a-1\right)\left(a+1\right)⋮6\)(*)

\(A=a\left(a-1\right)\left(b+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)

Do \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\) là tích 5 số nguyên liên tiếp nên nó chia hết cho 5 (1)

Mà \(5a\left(a-1\right)\left(a+1\right)⋮5\forall a\)(2)

Từ (1);(2) \(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)⋮5\)

Hay \(a\left(a^4-1\right)⋮5\)(**)

Từ (*);(**) \(\Rightarrow a\left(a^4-1\right)⋮30\)

Tương tự \(\hept{\begin{cases}b\left(b^4-1\right)⋮30\\c\left(c^4-1\right)⋮30\end{cases}}\)

\(\Rightarrow a\left(a^4-1\right)+b\left(b^4-1\right)+c\left(c^4-1\right)⋮30\)

Hay \(a^5+b^5+c^5-\left(a+b+c\right)⋮30\)(đpcm)