Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình chỉ giải được câu 1 thôi nhé
số nguyên tố là số >1 có 2 ước
gọi số đó là 12k+9
a=12k+9 mà số nguyên tố là số >1 suy ra a >9 achia hết cho 3
vậy không có số nguyên tố thõa mãn
xét ba trường hợp :
# trường hợp 1 : 3 số có dạng 6k+1 ( k thuộc n* ) => hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền
# trường hợp 2 : 3 so co dang 6k+5( k thuộc n* )=> hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền
# trường hợp 3 : 1 số có dạng 6k+1 và 2 số còn lại có dạng 6k+5 => có 2 số có tổng 6k+1+6k+5=12k+6(loai)
BẠN THỬ KIỂM TRA LẠI ĐỀ BÀI XEM
xét ba trường hợp :
# trường hợp 1 : 3 số có dạng 6k+1 ( k thuộc n* ) => hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền
# trường hợp 2 : 3 so co dang 6k+5( k thuộc n* )=> hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền
# trường hợp 3 : 1 số có dạng 6k+1 và 2 số còn lại có dạng 6k+5 => có 2 số có tổng 6k+1+6k+5=12k+6(loai)
trong 12 số luôn có 2 số đồng dư khi chia cho 2. vậy luôn chọn đc 2 số trong 12 số bất kì để có hiệu chia hết cho 2
cho 53 số nguyên tố khác nhau . Chứng minh rằng luôn tìm ra được 2 số mà hiệu của chúng chia hết 210
Theo nguyên tắc Đi-rích-lê thì ta có:Trong 12 số tự nhiên bất kì bao giờ cũng có 2 số có cùng số dư khi chia cho 11.Gọi 2 số đó là M và N thì:
M = 11m+n ; N = 11p+ n
Suy ra M - N = (11m+n) - (11p+n) = 11m-11p=11(m-p) chia hết cho 11
Vậy: Trong 12 số tự nhiên bất kì luôn tìm được 2 số có hiệu chia hết cho 11