Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lập dãy số . Đặt B1 = a1. B2 = a1 + a2 . B3 = a1 + a2 + a3 ................................... B10 = a1 + a2 + ... + a10 . Nếu tồn tại Bi ( i= 1,2,3...10). nào đó chia hết cho 10 thì bài toán được chứng minh. ( 0,25 điểm). Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ( các số dư ∈ { 1,2.3...9}). Theo nguyên tắc Di-ric- lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm -Bn, chia hết cho 10 ( m>n) ⇒ ĐPCM.
Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp :
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10 (đpcm)
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10)
...Sm = a1+a2+ ... + a(m)
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n)
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm)
Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp :
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10 (đpcm)
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10)
...Sm = a1+a2+ ... + a(m)
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n)
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm)
Đặt S1=a1;S2=a1+a2;...;S10=a1+a2+...+a10S1=a1;S2=a1+a2;...;S10=a1+a2+...+a10
Xét 1010 số S1;S2;S3;...:S10S1;S2;S3;...:S10 ta có 2 trường hợp:
(∗)(∗) Nếu có 1 số SkSk nào có tận cùng =0(Sk=a1;a2;...;a10;k=1→10)=0(Sk=a1;a2;...;a10;k=1→10)
⇒⇒ Tổng kk số a1;a2;...;ak⋮10a1;a2;...;ak⋮10
(∗)(∗) Nếu không có số nào trong 10 số S1;S2;...;S10S1;S2;...;S10 tận cùng bằng 00
⇒⇒ Chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau. Ta gọi 2 số đó là Sm;Sn(1≤m<n≤10)Sm;Sn(1≤m<n≤10)
Sm=a1+a2+...+amSm=a1+a2+...+am
Sn=a1+a2+...+am+am+1+...+anSn=a1+a2+...+am+am+1+...+an
⇒Sn−Sm=am+1+am+2+...+an⇒Sn−Sm=am+1+am+2+...+an tận cùng là 0
⇒n−m=am+1+am+2+...+an⋮10⇒n−m=am+1+am+2+...+an⋮10
Vậy a1+a2+...+a10⋮10a1+a2+...+a10⋮10 (Đpcm)
Câu hỏi của Lê Minh Đạo - Toán lớp 6 - Học toán với OnlineMath
Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp :
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10 (đpcm)
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10)
...Sm = a1+a2+ ... + a(m)
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n)
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm)