\(cho 10 <a<16 và 2 <b<4\)

Tìm a+b ; a- b; a.b

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Từ a+b+c=6 \(\Rightarrow\)a+b=6-c

Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9

                               \(\Leftrightarrow\)ab=9-c(a+b)

           Mà a+b=6-c (cmt)

                                \(\Rightarrow\)ab=9-c(6-c)

                                \(\Rightarrow\)ab=9-6c+c2

Ta có: (b-a)2\(\ge\)\(\forall\)b, c

  \(\Rightarrow\)b2+a2-2ab\(\ge\)0

  \(\Rightarrow\)(b+a)2-4ab\(\ge\)0

  \(\Rightarrow\)(a+b)2\(\ge\)4ab

Mà a+b=6-c (cmt)

         ab= 9-6c+c2 (cmt)

  \(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)

  \(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2

  \(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0

  \(\Rightarrow\)-3c2+12c\(\ge\)0

  \(\Rightarrow\)3c2-12c\(\le\)0

  \(\Rightarrow\)3c(c-4)\(\le\)0

  \(\Rightarrow\)c(c-4)\(\le\)0

\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)

*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)

*

23 tháng 12 2017

Bài 1:

A B C M N E

a) Ta có: MN là đường trung bình của tam giác ABC (vì M, N lần lượt là trung điểm của AB, AC)

\(\Rightarrow\) MN // BC và MN = \(\dfrac{1}{2}\)BC

\(\Rightarrow\) MNCB là hình thang.

b) Ta có: ME = MN + NE = 2MN (MN = NE)

Lại có: MN = \(\dfrac{1}{2}\)BC (cmt)

\(\Rightarrow\) BC = 2MN = ME

Mà BC // ME (BC // MN)

\(\Rightarrow\) MECB là hình bình hành.

23 tháng 12 2017

Bài 2:

A B C D M K H N

a) Ta có: KM là đường trung bình của tam giác AHB (vì K, M lần lượt là trung điểm của BH, AH)

\(\Rightarrow\) KM // AB và KM = \(\dfrac{1}{2}AB\)

\(\Rightarrow\) ABKM là hình thang.

b) Ta có: KM // AB và KM = \(\dfrac{1}{2}AB\) (cmt)

Mà AB // CD và AB = CD

\(\Rightarrow\) KM // CD và KM = \(\dfrac{1}{2}CD\)

\(\Rightarrow\) KM // NC (N \(\in\)CD) và KM = NC (= \(\dfrac{1}{2}CD\))

\(\Rightarrow\) MNCK là hình bình hành.

5 tháng 5 2017

a. Do \(a>0,\) \(b>0\) \(\Rightarrow a,b\) là số dương

Ta có:

* \(a< b\Leftrightarrow a^2< ab\) (nhân cả hai vế với a)

* \(a< b\Leftrightarrow ab< b^2\) (nhân cả hai vế với b)

b. Từ câu a theo tính chất bắc cầu suy ra:\(a^2< b^2\)

Ta có: \(a^2< b^2\Leftrightarrow a^3< ab^2\) (nhân cả hai vế với a)

ab2<b3 (a<b)

\(\Rightarrow a^3< b^3\)

21 tháng 6 2020

https://olm.vn/hoi-dap/detail/258469425824.html . Bạn tham khảo link này

10 tháng 7 2020

Áp dụng BĐT Cauchy cho 2 số không âm ta có : 

\(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt[2]{\frac{a}{16}.\frac{1}{a}}+\frac{60}{16}=\frac{17}{4}\)

Đẳng thức xảy ra khi và chỉ khi \(a=4\)

Vậy \(Min_A=\frac{17}{4}\)khi \(a=4\)

27 tháng 2 2017

\(\Leftrightarrow a^2+b^2-2ab+2a-2b=63\)

\(\Leftrightarrow\left(b-a\right)^2-2\left(b-a\right)-63=0 \)

\(\Leftrightarrow\left(b-a\right)^2-9\left(b-a\right)+7\left(b-a\right)-63=0\)

\(\Leftrightarrow\left(b-a\right)\left(b-a-9\right)+7\left(b-a-9\right)=0\)

\(\Leftrightarrow\left(b-a-9\right)\left(b-a+7\right)=0\)

\(\Leftrightarrow b-a-9=0\) hoặc \(b-a+7=0\)

\(\Leftrightarrow b-a=9\) hoặc \(b-a=-7\left(l\right)\) vì b > a

21 tháng 6 2020

1) \(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt{\frac{a}{16}.\frac{1}{a}}+\frac{15.4}{16}=\frac{17}{4}\)

Dấu "=" xảy ra <=> a = 4 

Vậy min A = 17/4 tại a = 4

2) \(B=3x+\frac{16}{x^3}=x+x+x+\frac{16}{x^3}\ge4\sqrt[4]{x.x.x.\frac{16}{x^3}}=8\)

Dấu "=" xảy ra <=> x = 2

Vậy min B = 8 tại x = 2

3) 0<x<2 tìm min \(C=\frac{9x}{2-x}+\frac{2}{x}\)

Ta có: \(C=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x}{2-x}+\frac{2-x}{x}+1\ge2\sqrt{\frac{9x}{2-x}.\frac{2-x}{x}}+1=7\)

Dấu "=" xảy ra <=> x = 1/2  thỏa mãn

Vậy min C = 7 đạt tại x = 1/2

23 tháng 7 2016

ai giúp tôi vs