Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chiều cao của tam giác đó là:
\(26\times2\div8=6,5\left(cm\right)\)
b) Nếu kéo dài cạnh đáy của tam giác \(ABC\)thêm \(3cm\)thì diện tích tăng thêm là:
\(6,5\times3\div2=9,75\left(cm^2\right)\)
Chiều cao là 18:2*1=9(cm)
Độ dài đáy là 9+18=27cm
Diện tích là 9*27/2=243/2(cm2)
a)
Vì chiều cao tam giác ABC cũng là chiều cao của tam giác ACM là:
\(30.\frac{2}{3}=20\left(cm\right)\)
Diện tích tam giác ABC là:
\(30.20:2=300\left(cm^2\right)\)
b)
Diện tích tam giác ACM là:
\(30.20:100=60\left(cm^2\right)\)
Độ dài cạnh CM là:
\(60.2:20=6\left(cm\right)\)
Đáp số: ...
A B C E I D
1. Ta thấy tam giác DEC Và DBE có chung chiều cao hạ từ đỉnh D mà Đoạn thẳng EC, EB bằng nhau nên Hai tam giác DEC, DEB bằng nhau
Ta thấy tam giác DEI , DAI có chung chiều cao hạ từ đỉnh D mà Đoạn thẳng AI, IE bằng nhau nên Hai tam giác DIA, DIE bằng nhau [1]
Ta thấy hai tam giác AIB, IBE có chung chiều cao hạ từ đỉnh B mà Đoạn thẳng AI, IE bằng nhau nên Hai tam giác ABI, IBE bằng nhau [2]
Từ [1] và [2] => Hai tam giác ABD và DBE bằng nhau mà hai tam giác DBE, DEC bằng nhau
=> Hai tam giác ABD , DEC bằng nhau
=> Tổng diện tích DBE, DEC gấp đôi diện tích tam giác ABD mà hai tam giác có trung chiều cao hạ từ B xuống nên đoạn thẳng DC gấp đôi đoạn thẳng AD.
Ta thấy hai tam giác AEC và AEB có chiều cao hạ từ A xuống mà đoạn thẳng BE và EC bằng nhau nên hai tam giác AEC và AEB bằng nhau
=> Tam giác AEC = 360 : 2 = 180 [cm2 ]
Ta thấy hai tam giác DEC và DEA có chung chiều cao hạ từ E mà đoạn thẳng DC gấp đôi AD
=> Tam giác AED = \(\frac{1}{3}\)tam giác AEC
=> Tam giác AED = \(\frac{1}{3}\) x 180
= 60 [cm2]
Từ [1] ta thấy diện tích tam giác ADI = \(\frac{1}{2}\) tam giác ADE
=>ADI = 60 x \(\frac{1}{2}\)
=> ADI = 30 [cm2]
Vậy diện tích tam giác ADI = 30 cm2
Giải
1)
2)
a) Gọi A là đáy, H là chiều cao
Theo đề bài ta có:
\(\frac{AxH}{2}\) = 72 và \(\frac{A}{12}\) = \(\frac{H}{3}\)
\(\frac{A}{12}\) = \(\frac{Hx4}{3x4}\) = \(\frac{Hx4}{12}\)
Vậy A = H x 4
Thế A vào thì ta có:
\(\frac{Hx4xH}{2}\) = 72
\(Hx4^2\) = 144
\(H^2\) = 144 : 4
\(H^2\) = 36
\(H^2\) = 6 x 6
H = 36
Thế H vào thì ta có:
\(\frac{Ax6}{2}\) = 72
A x 6 = 72 x 2
A x 6 = 144
A = 144 : 6
A = 24
b)
Nối B với N, ta có: S(NBM) = S( NMC). Vì hai tam giác có chung đường cao hạ từ N xuống BC và đáy BM = MC (*).
Theo bài ra MN // AB, nên đường cao hạ từ B xuống MN bằng đường cao hạ từ A xuống MN. Do đó ta có: S( BMN) = S(AMN). Vì hai tam giác có đường cao bằng nhau, đáy MN chung (**)
Từ (*) và (**) ta có: S(AMN) = S(MNC). Vì hai tam giác có diện tích cùng bằng S(BMN).
Do S(AMN) + S(MNC) = S(AMC)
Mà S(AMC) = 1/2 S(ABC). Vì hai tam giác chung đường cao hạ từ A xuống BC, đáy MC = 1/2 BC.
Vậy S(MNC) = 1/4 S(ABC) = 72 : 4 = 18 (cm2).
Diện tích tam giác ADC là:
18 x 50 :2 = 450 (m)
Độ dài cạnh BC là:
180 -(50 + 50 + 30) =50(cm)
từ A kẻ đường cao AH:
450 x 2 : 30 = 30 (cm)
Diện tích tam giác ABC là:
30 x 50 :2=750 (cm)
Đáp số : 750 cm
Hinh thang cân ABCD có độ dài đáy AB = 3 cm, CD = 5 cm, chiều cao ED = 3 cm
a) Diện tích hình thang cân ABCD là:
(3 + 5). 3 : 2 = 12 (cm2)
b) Vì tam giác BDC và tam giác ADE có chiều cao đều bằng 3 cm, đáy CD của tam giác BCD gấp 5 lần đáy AE của tam giác ADE nên diện tích tam giác BDC gấp 5 lần diện tích tam giác ADE.
S= căn 3 chia 4
chịu lun