\(cho 1 đa giác đều có 2017 đỉnh.Người ta ghi lên mỗi đỉnh của đa giác số 1 hoặc số 2 biết rằn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2018

Cho 1 đa giác đều có 2017 đỉnh. Người ta ghi lên mỗi đỉnh của đa giác số 1 hoặc số 2 biết rằng có 1 .......

Mk xung phong phiên dịch cái đề cho dễ đọc thôi !

7 tháng 8 2018

mày nói cái đếch gì thé

13 tháng 3 2016

k đi rồi mới làm

13 tháng 3 2016

day la bai toan so 94 ma 

17 tháng 2 2022

x y 1 1 A B C D E M

Ta thấy \(\left[BCD\right]=\left[EDC\right]=1\Rightarrow d\left(B,CD\right)=d\left(E,CD\right)\Rightarrow BE||CD\)

Tương tự \(AB||CE,AE||BD\). Gọi giao điểm của \(BD,CE\) là \(M\) thì \(ABME\) là hình bình hành

Suy ra \(\left[BME\right]=\left[BAE\right]=1\)

Ta có \(x+y=\left[CDE\right]=1;\)\(\frac{x}{y}=\frac{MC}{ME}=\sqrt{\frac{x}{\left[BME\right]}}=\sqrt{x}\)

Giải hệ \(\hept{\begin{cases}x+y=1\\\frac{x}{y}=\sqrt{x}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1-y\\x\left(\frac{x}{y^2}-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1-y\\\frac{1-y}{y^2}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1-y\\y^2+y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3-\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\) (vì \(x,y>0\))

Vậy diện tích của ngũ giác đó là \(\left[ABCDE\right]=y+3=\frac{-1+\sqrt{5}}{2}+3=\frac{5+\sqrt{5}}{2}.\)

29 tháng 8 2019

A B C D E I

Gỉa sử ngũ giác ABCDE thảo mãn điều kiện bài toán .Tam giác ABCD và tam giác ECD  có \(S_{BCD}=S_{ECD}=1\), đáy CD chung nên các đường cao hạ từ B và E xuống CD bằng nhau \(\Rightarrow EB//CD\)

Tương tự ta có : \(AC//ED\) , \(BD//AE\) , \(CE//AB\)\(DA//BC\)

Gọi \(I=EC\Omega BC\Rightarrow\)ABIE là hình bình hành 

\(\Rightarrow S_{IBE}=S_{ABE}=1\). Đặt \(S_{ICD}=x< 1\)

\(\Rightarrow S_{IBC}=S_{BCD}-S_{ICD}=1-x=S_{BCD}-S_{ICD}=S_{IED}\)

Lại có : \(\frac{S_{ICD}}{S_{IDE}}=\frac{IC}{IE}=\frac{S_{IBC}}{S_{IBE}}\)HAY \(\frac{x}{1-x}=\frac{1-x}{1}\Rightarrow x^2-3x+1=0\)

\(\Rightarrow x=\frac{3\pm\sqrt{5}}{2}\)do x < 1  \(\Rightarrow x=\frac{3-\sqrt{5}}{2}\)

Vậy \(S_{IED}=\frac{\sqrt{5}-1}{2}\). Do đó \(S_{ABCDE}=S_{EAB}+S_{EBI}+S_{BCD}+S_{IED}=3+\frac{\sqrt{5}-1}{2}=\frac{5+\sqrt{5}}{2}\left(đvđt\right)\)

Chúc bạn học tốt !!!

W
15 tháng 4 2020

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiihhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhgggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggcccccccccccccccccccccccccccccccccccccccc

ko bk😞 😞 😞

17 tháng 8 2016

Hình vẽ: Gọi gia điểm của AC và BD là F.

CM AEDF là hình bình hành từ đó suy ra SADE=SADF=1.SADE=SADF=1.

Đặt SBFC=x⇒SCDF=1−x.SBFC=x⇒SCDF=1−x.

CM ΔBFCΔBFC đồng dạng với ΔDFA.ΔDFA.

Tìm được SCDF=−1+√52.SCDF=−1+52.

⇒So=3.618033989dm2⇒So=3.618033989dm2.

17 tháng 8 2016

Giả sử ngũ giác \(ABCDE\) thỏa mãn đk bài toán

Xét \(\Delta BCD\)Và \(ECD\)và \(S_{BCD}=S_{ECD}\)đáy \(CD\)chung, các đường cao hạ từ \(B\)và \(E\)xuống \(CD\) bằng nhau => \(EB\)\(CD\),Tương tự \(AC\)//\(ED\) ,\(BD\)\(AE\), \(CE\)\(AB\), \(DA\)\(BC\)

Gọi \(I\) \(=EC\)\(BC\)=> \(ABIE\)là hình bình hành

=> \(S_{IBE}=S_{ABE}=1\)Đặt\(S_{ICD}=x< 1\)

=> SIBC = SBCD - SICD = 1-x = SECD - SICD = SIED

Lại có: \(\orbr{\begin{cases}S_{ICD}=IC=S_{IBC}\\S_{IDE}=IE=S_{IBE}\end{cases}}\)Hay \(\orbr{\begin{cases}x\\1-x\end{cases}}\)\(=\orbr{\begin{cases}1-x\\1\end{cases}}\)

=> x2-3x+ 1 = 0 => x =\(\frac{3+5}{2}\)Do x<1 => x=\(\frac{3-5}{2}\)

Vậy \(S_{IBE}=\frac{5-1}{2}\)

Do đó SABCDE = SEAB + SEBI + SBCD + SIED

\(=3+\frac{5-1}{2}=\frac{5+5}{2}=5\)