Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(\Leftrightarrow\)\(\left(ax\right)^2+2axby+\left(by\right)^2\le\left(ax\right)^2+\left(ay\right)^2+\left(bx\right)^2+\left(by\right)^2\)
\(\Leftrightarrow\)\(2axby\le\left(ay\right)^2+\left(bx\right)^2\)
\(\Leftrightarrow\)\(\left(ay\right)^2-2axby+\left(bx\right)^2\ge0\)
\(\Leftrightarrow\)\(\left(ay-bx\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\) \(\frac{a}{x}=\frac{b}{y}\)
\(Tacó:\)
\(\left\{{}\begin{matrix}\left|2x+1\right|\ge0\\\left|3x+2\right|\ge0\\\left|4x+3\right|\ge0\end{matrix}\right.\Rightarrow\left|2x+1\right|+\left|3x+2\right|+\left|4x+3\right|\ge0\Rightarrow x-1\ge0\Rightarrow x\ge1\Rightarrow\left\{{}\begin{matrix}2x+1>0\\3x+2>0\\4x+3>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|2x+1\right|=2x+1\\\left|3x+2\right|=3x+2\\\left|4x+3\right|=4x+3\end{matrix}\right.\Rightarrow2x+1+3x+2+4x+3=x-1\Leftrightarrow9x+6=x-1\Leftrightarrow8x=-7\left(\text{vô lí}\right)\)
\(Vậy:x\in\varnothing\)
\(2,\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\Leftrightarrow\left(ax\right)^2+\left(ay\right)^2+\left(bx\right)^2+\left(by\right)^2\ge\left(ax\right)^2+2axby+\left(by\right)^2\Leftrightarrow\left(ay\right)^2+\left(bx\right)^2\ge2axby\Leftrightarrow\left(ay\right)^2-2axby+\left(bx\right)^2\ge0\Leftrightarrow\left(ay-bx\right)^2\ge0\left(\text{luôn đúng}\right).\text{Vậy BĐT đã được chứng minh}\)
a)theo C-S: \(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
Khi \(x=y\)
b)theo C-S: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)
khi x=y=z
c)theo C-S: \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
khi \(\frac{a}{x}=\frac{b}{y}\)
Đây là bất đẳng thức Bunhia Cốpxki bạn, lên mạng tra cách giải là đc!
b) ta có: \(\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x+y\right)^2\ge\left(x+y\right)^2\)
\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
- Thay \(x^2+y^2=1\)
\(\Rightarrow\)\(2\ge\left(x+y\right)^2\)
\(\Leftrightarrow\sqrt{\left(x+y\right)^2}\le\sqrt{2}\)
\(\Leftrightarrow\left|x+y\right|\le\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)
- Áp dụng bđt: \(a^2+b^2+c^2\ge ab+bc+ac\)
có: \(a^4+b^4+c^4\ge a^2b^2+b^2c^2+a^2c^2\) (1)
- Áp dụng tiếp bđt trên
có: \(a^2b^2+b^2c^2+a^2c^2\ge a^2bc+ab^2c+c^2ab\) (2)
\(\Leftrightarrow\)\(a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\) (3)
(1),(2),(3)\(\Rightarrow\) \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
câu a phân tích ra rồi khử rồi chuyển vế được hằng đẳng thức : (ay-bx)^2 >= 0 với mọi a,b,x,y
Dấu bằng xảy khi ay=bx
câu b khai triển ra, nhân cả 2 vế với 2 rồi chuyển vế, nhóm hạng tử được
(a-c)^2+(a-d)^2+(b-c)^2+(b-d)^2 >= 0 với mọi a,b,c,d
Dấu = xảy ra khi a=b=c=d
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Leftrightarrow a^2x^2+b^2x^2+a^2y^2+b^2y^2=a^2x^2+2axby+b^2y^2\)
\(\Leftrightarrow a^2x^2+b^2x^2+a^2y^2+b^2y^2-a^2x^2-2axby-b^2y^2=0\)
\(\Leftrightarrow a^2y^2-2axby+b^2x^2=0\)
\(\Leftrightarrow a^2b^2-axby-axby+b^2x^2=0\)
\(\Leftrightarrow ay\left(ay-bx\right)-bx\left(ay-bx\right)=0\)
\(\Leftrightarrow\left(ay-bx\right)\left(ay-bx\right)=0\)
\(\Leftrightarrow\left(ay-bx\right)^2=0\)
\(\Leftrightarrow ay-bx=0\)
\(\Leftrightarrow ay=bx\)
\(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)
a. Thực hiện phép chia,ta được :
\(\left(x^4+ax^2+1\right):\left(x^2+x+1\right)=\left(x^2-x+a\right)\text{dư}\left(1-a\right)x+\left(b-a\right)\)
muốn chia hết thì đa thức dư phải đồng nhất bằng 0, tức là :
\(\left\{{}\begin{matrix}1-a=0\\b-a=a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
Vậy ...
Ý 3 bạn bỏ dòng áp dụng....ta có nhé
\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
\(\Leftrightarrow\left(\frac{a^2}{4}-2.\frac{a}{2}b+b^2\right)+\left(\frac{a^2}{4}-2.\frac{a}{2}c+c^2\right)+\)\(\left(\frac{a^2}{4}-2.\frac{a}{d}d+d^2\right)+\frac{a^2}{4}\ge0\forall a;b;c;d\)
\(\Leftrightarrow\left(\frac{a}{2}-b\right)+\left(\frac{a}{2}-c\right)+\)\(\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\forall a;b;c;d\)( luôn đúng )
Dấu " = " xảy ra <=> a=b=c=d=0
6) Sai đề
Sửa thành:\(x^2-4x+5>0\)
\(\Leftrightarrow\left(x-2\right)^2+1>0\)
7) Áp dụng BĐT AM-GM ta có:
\(a+b\ge2.\sqrt{ab}\)
Dấu " = " xảy ra <=> a=b
\(\Leftrightarrow\frac{ab}{a+b}\le\frac{ab}{2.\sqrt{ab}}=\frac{\sqrt{ab}}{2}\)
Chứng minh tương tự ta có:
\(\frac{cb}{c+b}\le\frac{cb}{2.\sqrt{cb}}=\frac{\sqrt{cb}}{2}\)
\(\frac{ca}{c+a}\le\frac{ca}{2.\sqrt{ca}}=\frac{\sqrt{ca}}{2}\)
Dấu " = " xảy ra <=> a=b=c
Cộng vế với vế của các BĐT trên ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)
Dấu " = " xảy ra <=> a=b=c
1)\(x^3+y^3\ge x^2y+xy^2\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)
\(\Leftrightarrow x^2-xy+y^2\ge xy\) ( vì x;y\(\ge0\))
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )
\(\Rightarrow x^3+y^3\ge x^2y+xy^2\)
Dấu " = " xảy ra <=> x=y
2) \(x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )
Dấu " = " xảy ra <=> x=y
3) Áp dụng BĐT AM-GM ta có:
\(\left(a-1\right)^2\ge0\forall a\Leftrightarrow a^2-2a+1\ge0\)\(\forall a\Leftrightarrow\frac{a^2}{2}+\frac{1}{2}\ge a\forall a\)
\(\left(b-1\right)^2\ge0\forall b\Leftrightarrow b^2-2b+1\ge0\)\(\forall b\Leftrightarrow\frac{b^2}{2}+\frac{1}{2}\ge b\forall b\)
\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\)\(\forall a;b\Leftrightarrow\frac{a^2}{2}+\frac{b^2}{2}\ge ab\forall a;b\)
Cộng vế với vế của các bất đẳng thức trên ta được:
\(a^2+b^2+1\ge ab+a+b\)
Dấu " = " xảy ra <=> a=b=1
4) \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)
\(\Leftrightarrow\left[a^2-2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[b^2-2.b.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[c^2-2.c.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\ge0\forall a;b;c\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2\)\(+\left(b-\frac{1}{2}\right)^2\)\(+\left(c-\frac{1}{2}\right)^2\ge0\forall a;b;c\)( luôn đúng)
Dấu " = " xảy ra <=> a=b=c=1/2