Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì \(1< a\Rightarrow a+1< 2a(1)\)
\(b< c\Rightarrow 2b< b+c(2)\)
Mà \(b+c< a+1\) do đó kết hợp với \((1);(2)\) suy ra:
\(2b< b+c< a+1< 2a\)
\(\Rightarrow b< a\)
Ta có đpcm.
Ta có 1<a
=> a+1<2a
Ta có b<c
=> 2b<b+c
Mà b+c<a+1 ( theo gt cho )
Mà a+1<2a ; 2b<b+c
=> 2b<2a
=> b<a
=> dpcm
Ta có : \(0\le a\le b\le1\Rightarrow\hept{\begin{cases}a-1\le0\\b-1\le0\end{cases}}\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab-a-b+1\ge0\)
\(\Rightarrow ab+1\ge a+b\Rightarrow\frac{1}{ab+1}\le\frac{1}{a+b}\)
\(\Rightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\left(c\ge0\right)\)
Mà \(\frac{c}{a+b}\le\frac{2c}{a+b+c}\left(c\ge0\right)\Rightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)
CM tương tự ta cũng có : \(\hept{\begin{cases}\frac{b}{ac+1}\le\frac{2b}{a+b+c}\\\frac{a}{bc+1}\le\frac{2a}{a+b+c}\end{cases}}\)
Cộng vế với vế ta được :
\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\) (ĐPCM)
Vậy \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)
Cho abc là số dương thỏa mãn 0<a<b<c<1
Chứng minh rằng \(\frac{a}{bc+1}\)+\(\frac{b}{ac+1}\)+\(\frac{c}{ab+1}\)<2
Từ giả thiết ta có:
(1-b) (1-c)>0 và 1 -(b+c)+bc>0 và bc+1>b+c và \(\frac{a}{bc+1}\)<\(\frac{a}{b+c}\)<\(\frac{a}{a+b}\)(1)
Tương tự ta cũng có :\(\frac{b}{ac+1}\)<\(\frac{b}{a+c}\)<\(\frac{b}{a+b}\)(2);\(\frac{c}{ab+1}\)<c<1(3)
Cộng (1),(2),(3) theo vế ta được :\(\frac{a}{bc+1}\)+\(\frac{b}{ac+1}\)+\(\frac{c}{ab+1}\)<\(\frac{a+b}{a+b}\)+1=2
Vậy \(\frac{a}{bc+1}\)+\(\frac{b}{ac+1}\)+\(\frac{c}{ab+1}\)<2
Ta có: \(0\le a\le b\le c\le1\Leftrightarrow\left(1-a\right)\left(1-b\right)\ge0\)
\(\Rightarrow1-b-a+ab\ge0\Leftrightarrow1+ab\ge a+b\)
Tiếp tục chứng minh.
\(\hept{\begin{cases}1\ge c\\0\le a\le b\Leftrightarrow ab\ge0\end{cases}}\)
Cộng theo vế: \(2\left(ab+1\right)\ge a+b+c\)
Trở lại bài toán: \(\frac{c}{ab+1}=\frac{2c}{2\left(ab+1\right)}\le\frac{2c}{a+b+c}\)
Tương tự rồi cộng theo vế suy ra đpcm
Ta có: \(a\le1\Rightarrow a-1\le0\)
\(b\le1\Rightarrow b-1\le0\)
Ta có: \(\left(a-1\right)\left(b-1\right)\ge0\)( mới chứng minh ở trên đó )
\(\Rightarrow ab-a-b+1\ge0\Leftrightarrow ab+1\ge a+b\Leftrightarrow2ab+1\ge ab\ge a+b\)
\(\Rightarrow2ab+2\ge a+b+c\Leftrightarrow\frac{1}{2}ab+2\ge\frac{1}{a+b+c}+\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)
Ta cũng chứng minh tương tự với \(\frac{b}{ac+1}\le\frac{2b}{a+b+c};\frac{a}{bc+1}\le\frac{2a}{a+b+c}\)
Từ đây bạn tự làm tiếp rồi suy ra đpcm nha
Ta có :
a < b \(\Rightarrow\)2a < a + b \(\Rightarrow\)\(\frac{a}{a+b}< \frac{1}{2}\)
c < d \(\Rightarrow\)2c < c + d \(\Rightarrow\)\(\frac{c}{c+d}< \frac{1}{2}\)
m < n \(\Rightarrow\)2m < m + n \(\Rightarrow\)\(\frac{m}{m+n}< \frac{1}{2}\)
\(\Rightarrow\)2a + 2c + 2m < ( a + b ) + ( c + d ) + ( m + n )
\(\Rightarrow\)2 . (a + c + nm ) < a + b + c + d + m + n
\(\Rightarrow\)\(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
\(a< b\Rightarrow2a< a+b\)
\(c< d\Rightarrow2c< c+d\)
\(m< n\Rightarrow2m< m+n\)
\(\Rightarrow2a+2c+2m< a+b+c+d+m+n\)
\(\Rightarrow2\left(a+c+m\right)< a+b+c+d+m+n\)
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\left(\text{đ}pcm\right)\)