\(\dfrac{4t^2+9}{t^2\left(3-t\right)}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

Lời giải:

Áp dụng BĐT Cô-si:

$t(3-t)\leq \left(\frac{t+3-t}{2}\right)^2=\frac{9}{4}$

$\Rightarrow A\geq \frac{4(4t^2+9)}{9t}$

$=\frac{16t^2+36}{9t}=\frac{16t}{9}+\frac{4}{t}$

$\geq 2\sqrt{\frac{16t}{9}.\frac{4}{t}}=\frac{16}{3}$ (tiếp tục áp dụng BĐT Cô-si) 

Vậy $A_{\min}=\frac{16}{3}$. Giá trị này đạt được khi $x=\frac{3}{2}$

27 tháng 1 2018

Bài 1:

ta có: C=\(\dfrac{x}{1-x}+\dfrac{5}{x}=\dfrac{x}{1-x}+\dfrac{5-5x+5x}{x}=\dfrac{x}{1-x}+\dfrac{5.\left(1-x\right)}{x}+\dfrac{5x}{x}=\dfrac{x}{1-x}+\dfrac{5.\left(1-x\right)}{x}+5\)

Vì 0<x<1==> \(\dfrac{x}{1-x}>0,\dfrac{5.\left(1-x\right)}{x}>0\)

Asp dụng BĐT coossi cho 2 số dg ta đc

\(\dfrac{x}{1-x}+\dfrac{5.\left(1-x\right)}{x}>=2.\sqrt{\dfrac{x}{1-x}.\dfrac{5.\left(1-x\right)}{x}}\)=2\(\sqrt{5}\)

==> C >= 2\(\sqrt{5}+5\)

Dấu ''='' xảy ra <=>\(\dfrac{x}{1-x}=\dfrac{5.\left(1-x\right)}{x}< =>x^{2^{ }}=5.\left(1-x\right)^2\)

<=> x=\(\dfrac{5-\sqrt{5}}{4}\)

Vậy..............

27 tháng 1 2018

bài 2 :

ta có A= -x+2.\(\sqrt{\left(x-3\right).\left(1-2x\right)}\)

= [ (x-3) + 2\(\sqrt{\left(x-3\right).\left(1-2x\right)}\)+( 1-2x)] +2

= ( \(\sqrt{x-3}+\sqrt{1-2x}\))2+2

Nhận thấy( \(\sqrt{x-3}+\sqrt{1-2x}\))2>= 0

==> A >= 2

dấu ''='' xáy ra <=>( \(\sqrt{x-3}+\sqrt{1-2x}\))2=0

<=> \([^{x=3}_{x=\dfrac{1}{2}}\)

vậy..............

5 tháng 12 2018

1.ĐK:\(x\ge0,x\ne9\)

\(P=\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\dfrac{2\sqrt{x}-2-\sqrt{x}-3}{\sqrt{x}-3}\)

\(=\left[\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right].\dfrac{\sqrt{x}-3}{\sqrt{x}-5}\)

\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-5\right)}.\)

Để \(P< \dfrac{-1}{2}\Leftrightarrow\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-5\right)}< \dfrac{-1}{2}\)

17 tháng 8 2018

\(A=\left(x-2\right)\cdot\sqrt{\dfrac{9}{\left(x-2\right)^2}}+3=\dfrac{3\left(x-2\right)}{\left|x-2\right|}+3=\dfrac{3\left(x-2\right)}{-\left(x-2\right)}=-3+3=0\)

\(B=\sqrt{\dfrac{a}{6}}+\sqrt{\dfrac{2a}{3}}+\sqrt{\dfrac{3a}{2}}=\dfrac{\sqrt{a}}{\sqrt{6}}+\dfrac{\sqrt{2a}}{\sqrt{3}}+\dfrac{\sqrt{3a}}{\sqrt{2}}=\dfrac{\sqrt{a}+2\sqrt{a}+3\sqrt{a}}{\sqrt{6}}=\dfrac{6\sqrt{a}}{\sqrt{6}}=\sqrt{6a}\)

\(E=\sqrt{9a^2}+\sqrt{4a^2}+\sqrt{\left(1-a\right)^2}+\sqrt{16a^2}=3\left|a\right|+2\left|a\right|+\left|1-a\right|+4\left|a\right|=9\left|a\right|+1-a=-9a+1-a=-10a+1\)

\(F=\left|x-2\right|\cdot\dfrac{\sqrt{x^2}}{x}=\left|x-2\right|\cdot\dfrac{\left|x\right|}{x}=\dfrac{x\left(x-2\right)}{x}=x-2\)

\(H=\dfrac{x^2+2\sqrt{3}\cdot x+3}{x^2-3}=\dfrac{\left(x+\sqrt{3}\right)^2}{\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)}=\dfrac{x+\sqrt{3}}{x-\sqrt{3}}\)

\(I=\left|x-\sqrt{\left(x-1\right)^2}\right|-2x=\left|x-\left(-\left(x-1\right)\right)\right|-2x=\left|x+x-1\right|-2x=\left|2x-1\right|-2x=1-4x\)

7 tháng 11 2019

a) \(P=\left(\frac{2\sqrt{2}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-\left(3x+3\right)}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-\frac{\sqrt{x}-3}{\sqrt{x}-3}\right)\)\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right).\left(\sqrt{x}+1\right)}\)

\(=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-3}{\sqrt{x}+3}\)

15 tháng 8 2018

a/\(x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{\left(x-3\right)^2}=x+3+\left|x-3\right|=x+3+3-x=6\)

b/ \(\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{\left(x+2\right)^2}-\left|x\right|=\left|x+2\right|-\left|x\right|=-x-2-\left(-x\right)=-x-2+x=-2\)

c/ \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\cdot\left(x-1\right)=\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=\left|x-1\right|\)

d/ \(\left|x-2\right|+\dfrac{\sqrt{x^2-4x+4}}{x-2}=2-x+\dfrac{\sqrt{\left(x-2\right)^2}}{x-2}=2-x+\dfrac{\left|x-2\right|}{x-2}=2-x+\dfrac{-\left(x-2\right)}{x-2}=2-x-1=1-x\)