![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)
ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)
\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)
\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)
Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị
trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ đề bài ta có:
\(\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge0\\\left(x-3\right)\left(y-3\right)\left(3-z\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\ge0\\-xyz+3\left(xy+yz+zx\right)-9\left(x+y+z\right)+27\ge0\end{matrix}\right.\)
Lấy trên + dưới ta được
\(4\left(xy+yz+zx\right)-8\left(x+y+z\right)+28\ge0\)
\(\Leftrightarrow4\left(xy+yz+zx\right)+20\ge0\)
\(\Leftrightarrow2\left(x+y+z\right)^2+20\ge2x^2+2y^2+2z^2\)
\(\Leftrightarrow x^2+y^2+z^2\le11\)
Bài này Karamata là vừa :D
Giả sử \(a\ge b\ge c\)
Khi \(f\left(x\right)=x^2\) là hàm lồi trên \(\left[-1,3\right]\) và \((-1,-1,3)\succ(a,b,c)\)
Theo Karamata's inequality ta có:
\(11=\left(-1\right)^2+\left(-1\right)^2+3^2\ge a^2+b^2+c^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét : A = x^2017+x^2017+1+1+.....+1 ( 2015 số 1 )
Áp dụng bđt cosi thì :
A >= \(2017\sqrt[2017]{x^{2017}.x^{2017}}\) = 2017.x^2
=> x^2 < = 2x^2017+2015/2017
Tương tự : y^2 < = 2y^2017+2015/2017 ; z^2 < = 2z^2017+2015/2017
=> x^2+y^2+z^2 < = 2(x^2017+y^2017+z^2017)+6045/2017 = 2.3+6045/2017 = 3
Dấu "=" xảy ra <=> x=y=z=1
Vậy GTLN của x^2+y^2+z^2 = 3 <=> x=y=z=1
Tk mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT AM-GM cho 3 số dương a,b,c:
\(x^3+1+1\ge3\sqrt[3]{x^3.1.1}=3x\left(1\right)\)
Hoàn toàn tương tự, ta đc: \(y^3+1+1\ge3y\left(2\right)\)
Và: \(z^3+1+1\ge3z\left(3\right)\)
Cộng (1)(2)(3) VTV: \(Q+6\ge3\left(x+y+x\right)=3.3=9\)
\(\Leftrightarrow Q\ge9-6=3\Rightarrow Q_{Min}=3\)
Dấu "=" xảy ra khi x=y=z=1
Ta có:A = \(x^3+y^3+z^3=\left(x+y\right)^3+z^3-3xy\left(x+y\right)\)
A = \(\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz\right)-3xy\left(x+y+z\right)+3xyz\)
A = \(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)+3xyz\)
A = \(3\left(x^2+y^2+z^2-xy-yz-xz+xyz\right)\) (Vì x + y + z = 3)
Mà: \(0\le x,y,z\le1\) => \(\hept{\begin{cases}x-1\le0\\y-1\le0\\z-1\le0\end{cases}}\) => (x - 1)(y - 1)(z - 1) \(\le\)0 => xyz - (xy + yz + xz) + (x + y + z) - 1\(\le\)0
<=> xyz \(\le\)xy + yz + xz + 1 - 3 = xy + yz + xz - 2
Do đó: A \(\le3\left(x^2+y^2+z^2-xy-yz-xz+xy+yz+xz-2\right)\)
A \(\le3\left(x^2+y^2+z^2-2\right)\le3\cdot\left(\frac{\left(x+y+z\right)^2}{3}-2\right)=3\cdot\left(\frac{3^2}{3}-2\right)=3\)
Dấu "=" xảy ra<=> x = y = z = 1
Vậy Max x3 + y3 + z3 = 3 <=> x = y = z = 1
thanks bạn nhìu nha