Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
a. Áp dụng BĐT Cô-si: x + y\(\ge\) \(2\sqrt{xy}\) (với x,y\(\ge\)0)
Ta có: a + b\(\ge\)\(2\sqrt{ab}\)
b+c\(\ge\)\(2\sqrt{bc}\)
c+a\(\ge\)\(2\sqrt{ca}\)
\(\Rightarrow\) (a+b)(b+c)(c+a) \(\ge\)\(8\sqrt{a^2b^2c^2}\)= 8abc (đpcm)
b. Áp dụng BĐT Cô-si: \(\sqrt{ab}\)\(\le\)\(\dfrac{a+b}{2}\) ( với a,b\(\ge\)0)
Ta có: \(\sqrt{3a\left(a+2b\right)}\)\(\le\)\(\dfrac{3a+a+2b}{2}\)=\(\dfrac{4a+2b}{2}\)=2a+b
\(\Rightarrow\) \(a\sqrt{3a\left(a+2b\right)}\)\(\le\)a(2a+b) = 2a2+ab
CMTT: \(b\sqrt{3b\left(b+2a\right)}\)\(\le\)b(2b+a) = 2b2+ab
\(\rightarrow\)\(a\sqrt{3a\left(a+2b\right)}\)+\(b\sqrt{3b\left(2b+a\right)}\)\(\le\) 2a2+ab+2b2+ab
= 2(a2+b2)+2ab =6(đpcm)
c. Áp dụng BĐT Cô-si với 3 số a+b; b+c;c+a
Ta có: (a+b)(b+c)(c+a)\(\le\)\(\left(\dfrac{2\left(a+b+c\right)}{3}\right)^3\)
\(\Leftrightarrow\) 1 \(\le\) \(\dfrac{8}{27}\left(a+b+c\right)^3\)
\(\Leftrightarrow\) (a+b+c)3 \(\ge\) \(\dfrac{8}{27}\)
\(\Leftrightarrow\) a+b+c \(\ge\) \(\dfrac{3}{2}\) (1)
Lại có: (a+b)(b+c)(c+a) = (a+b+c)(ab+bc+ca) -abc
\(\Leftrightarrow\) 1= (a+b+c)(ab+bc+ca) - abc
\(\Leftrightarrow\) ab+bc+ca = \(\dfrac{1+abc}{a+b+c}\) (2)
Theo câu a. (a+b)(b+c)(c+a) \(\ge\) 8abc
\(\Leftrightarrow\) 1 \(\ge\) 8abc
\(\Leftrightarrow\) abc \(\le\)\(\dfrac{1}{8}\) (3)
Từ (1),(3) kết hợp với (2)
\(\Rightarrow\) ab+bc+ca \(\le\) \(\dfrac{1+\dfrac{1}{8}}{\dfrac{3}{2}}\) = \(\dfrac{3}{4}\) (đpcm)
Vì a;b;c là 3 cạnh của tam giác nên mỗi nhân tử của VP đều dương,áp dụng bđt Cauchy:
\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=b\)
\(\sqrt{\left(b+c-a\right)\left(a+c-b\right)}\le\frac{b+c-a+a+c-b}{2}=c\)
\(\sqrt{\left(a+c-b\right)\left(a+b-c\right)}\le\frac{a+c-b+a+b-c}{2}=a\)
Nhân theo vế => ddpcm "=" khi a=b=c
bài này điểm rơi hơi thộn, mò được ngay thì hơi khó :))
Áp dụng BĐT AM-GM ta có:
\(b^2\left(c-b\right)=\frac{1}{2}\cdot b\cdot b\left(2c-2b\right)\le\frac{1}{2}\left(\frac{b+b-2c-2b}{3}\right)^3=\frac{4c^3}{27}\)
Và \(a^2\left(b-c\right)\le0\). Khi đó
\(Q\le\frac{4c^3}{27}+c^2\left(1-c\right)=c^2-\frac{23}{27}c^3=c^2\left(1-\frac{23}{27}\cdot c\right)\)
\(=\frac{54^2}{23^2}c^2\left(1-\frac{23}{27}c\right)\le\frac{1}{3^3}\cdot\frac{54^2}{23^2}=\frac{108}{529}\)
Đẳng thức xảy ra khi \(a=0;b=\frac{12}{23};c=\frac{18}{23}\)
Theo đề bài ta có:
\(\hept{\begin{cases}-1\le a\le2\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Rightarrow a^2-a-2\le0\\-1\le b\le2\Rightarrow\left(b+1\right)\left(b-2\right)\le0\Rightarrow b^2-b-2\le0\\-1\le c\le2\Rightarrow\left(c+1\right)\left(c-2\right)\le0\Rightarrow c^2-c-2\le0\end{cases}\Rightarrow}\)\(a^2+b^2+c^2\ge\left(a+b+c\right)+6=6\)
Ko mất tính tổng quát giả sử \(a\ge b\ge c\)
Khi đó \(f\left(x\right)=a^2\) là hàm lồi trên \(\left[-1;2\right]\) và \(\left(-1;-1;2\right)›\left(a;b;c\right)\)
Áp dụng BĐT Karamata ta có:
\(6=\left(-1\right)^2+\left(-1\right)^2+2^2\ge a^2+b^2+c^2\)
Xảy ra khi a=b=-1;c=2
*Theo BĐT Cô-si: \(a^2+b^2\ge2ab\) (1) ; \(b^2+c^2\ge2bc\) (2) ; \(c^2+a^2\ge2ca\) (3)
Cộng vế theo vế (1), (2) và (3) ta được \(2P\ge2\left(ab+bc+ca\right)\Leftrightarrow P\ge ab+bc+ca=9\)
Vậy minP = 9, dấu bằng xảy ra khi: \(\hept{\begin{cases}a^2+b^2+c^2=9\\ab+bc+ca=9\end{cases}\Leftrightarrow a=b=c=\sqrt{3}}\)
**Từ giả thiết \(\Rightarrow ab+c\left(a+b\right)=9\Leftrightarrow c=\frac{9-ab}{a+b}\left(+\right)\)mà a, b, c là các số thực \(\ge1\)nên a,b \(\in\)[\(1;+\infty\)), tức là a, b dương vô cực, lớn không giới hạn \(\Rightarrow\left(+\right)\)dương vô cực hay \(a^2+b^2+c^2\)cũng lớn không giới hạn
Do đó: Không tồn tại maxP với điều kiện a, b, c là các số thực \(\ge1\)
***Kết luận: minP = 9 ; maxP không tồn tại
Mình xin lỗi bạn Kim Huệ Thương nhé! Phần GTLN của câu này mình xin phép giải lại, mong bạn thông cảm vì sơ suất của mình nhé!
Ta có: \(a\ge1;b\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\)(1)
Tương tự ta có: \(bc+1\ge b+c\)(2), \(ca+1\ge c+a\)(3)
Cộng vế theo vế (1), (2) và (3) ta được: \(ab+bc+ca+3\ge2\left(a+b+c\right)\Leftrightarrow a+b+c\le\frac{ab+bc+ca+3}{2}=\frac{9+3}{2}=6\)
\(\Leftrightarrow\left(a+b+c\right)^2\le36\Leftrightarrow a^2+b^2+c^2\le36-2\left(ab+bc+ca\right)=36-18=18\)
Dấu ''='' xảy ra khi: \(\hept{\begin{cases}a^2+b^2+c^2=18\\ab+bc+ca=9\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}or\hept{\begin{cases}a=1\\b=4\\c=1\end{cases}or\hept{\begin{cases}a=4\\b=1\\c=1\end{cases}}}}}\)
Xin lỗi bạn nhé! ^_^
Có \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)(bđt cosi vs hai số dương)
=> 4\(\ge2ab\) <=> 2\(\ge ab\) <=> \(\frac{2}{ab}\ge1\) (*) => \(\frac{2}{\sqrt{ab}}\ge\sqrt{2}\)
AD bđt cosi vs hai số dương có:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\) \(\ge\sqrt{2}\) (**).
Từ (*),(**) => \(\frac{1}{a}+\frac{1}{b}+\frac{2}{ab}\ge\sqrt{2}+1\)
Có \(M=\frac{ab}{a+b+2}=\frac{1}{\frac{1}{a}+\frac{1}{b}+\frac{2}{ab}}\le\frac{1}{\sqrt{2}+1}\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}a^2=b^2\\\frac{1}{a}=\frac{1}{b}\end{matrix}\right.< =>\left\{{}\begin{matrix}a=b\\a=b\end{matrix}\right.< =>a=b=\sqrt{2}\)(vì a,b>0)
Vậy maxM=\(\sqrt{2}-1\)
Tai sao từ \(\frac{2}{ab}>1=>\frac{2}{\sqrt{ab}}>\sqrt{2}\)