Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C/m BĐT : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)
Áp dụng BĐT Sơ-vác-sơ:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{x+y+z}\ge\dfrac{9}{x+y+z}\)
Ta có: \(9\dfrac{ab}{a+3b+2c}=\dfrac{9ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{a}{2}\left(1\right)\)
CM tương tự
\(\dfrac{9bc}{b+3c+2a}\le\dfrac{bc}{a+c}+\dfrac{bc}{a+b}+\dfrac{b}{2}\left(2\right)\)
\(\dfrac{9ca}{c+3a+2b}\le\dfrac{ca}{b+c}+\dfrac{ca}{a+b}+\dfrac{c}{2}\left(3\right)\)
Cộng vế (1), (2), (3) => đpcm
Lời giải:
Ta có:
\(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\leq \frac{3}{2}\)
\(\Leftrightarrow \frac{a-bc}{a(a+b+c)+bc}+\frac{b-ac}{b(a+b+c)+ca}+\frac{c-ab}{c(a+b+c)+ab}\leq \frac{3}{2}\)
\(\Leftrightarrow \frac{a-bc}{(a+b)(a+c)}+\frac{b-ac}{(b+a)(b+c)}+\frac{c-ab}{(c+a)(c+b)}\leq \frac{3}{2}\)
\(\Leftrightarrow \frac{(a-bc)(b+c)+(b-ac)(a+c)+(c-ab)(a+b)}{(a+b)(b+c)(c+a)}\leq \frac{3}{2}\)
\(\Leftrightarrow (a-bc)(b+c)+(b-ac)(a+c)+(c-ab)(a+b)\leq \frac{3}{2}(a+b)(b+c)(c+a)\)
\(\Leftrightarrow 2(ab+bc+ac)-[ab(a+b)+bc(b+c)+ac(a+c)]\leq \frac{3}{2}(1-a)(1-b)(1-c)\)
\(\Leftrightarrow 4(ab+bc+ac)-2[ab(a+b)+bc(b+c)+ac(c+a)]\leq 3(ab+bc+ac-abc)\)
\(\Leftrightarrow ab+bc+ac+3abc\leq 2[ab(a+b)+bc(b+c)+ca(c+a)]\)
\(\Leftrightarrow ab+bc+ac+9abc\leq 2[ab(a+b+c)+bc(a+b+c)+ac(a+b+c)]\)
\(\Leftrightarrow ab+bc+ac+9abc\leq 2(a+b+c)(ab+bc+ac)\)
\(\Leftrightarrow ab+bc+ac+9abc\leq 2(ab+bc+ac)\)
\(\Leftrightarrow 9abc\leq ab+bc+ac\)
\(\Leftrightarrow 9abc\leq (a+b+c)(ab+bc+ac)\)
BĐT trên luôn đúng do theo BĐT AM-GM ta có:
\((a+b+c)(ab+bc+ac)\geq 3\sqrt[3]{abc}.3\sqrt[3]{a^2b^2c^2}=9abc\)
Vậy ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)
b) \(\dfrac{1}{3a+2b+c}\le\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{1}{36}\left(\dfrac{3}{a}+\dfrac{2}{b}+\dfrac{1}{c}\right)\)
Tương tự cho 2 cái kia rồi cộng lại
\(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{6}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}.16=\dfrac{8}{3}\)
Đẳng thức xảy ra \(\Leftrightarrow\) ... \(\Leftrightarrow a=b=c=\dfrac{3}{16}\)
Ta có
\(\sum\dfrac{a}{a+\sqrt{2019a+bc}}=\sum\dfrac{a}{a+\sqrt{a^2+a\left(b+c\right)+bc}}\)
Áp dụng AM - GM : \(b+c\ge2\sqrt{bc}\)
\(\Rightarrow\sum\dfrac{a}{a+\sqrt{a^2+a\left(b+c\right)+bc}}\le\dfrac{a}{a+\sqrt{a^2+2a\sqrt{bc}+bc}}\)
\(=\sum\dfrac{a}{a+\sqrt{\left(a+\sqrt{bc}\right)^2}}=\sum\dfrac{a}{a+a+\sqrt{bc}}\)
Tự làm tiếp
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a^3(b+c)}+\frac{a(b+c)}{4}\geq 2\sqrt{\frac{1}{a^3(b+c)}.\frac{a(b+c)}{4}}=2\sqrt{\frac{1}{4a^2}}=\frac{1}{a}=\frac{abc}{a}=bc\)
Tương tự:
\(\frac{1}{b^3(c+a)}+\frac{b(c+a)}{4}\geq \frac{1}{b}=ac\)
\(\frac{1}{c^3(a+b)}+\frac{c(a+b)}{4}\geq \frac{1}{c}=ab\)
Cộng theo vế:
\(\Rightarrow \text{VT}+\frac{ab+bc+ac}{2}\geq ab+bc+ac\)
\(\Rightarrow \text{VT}\geq \frac{ab+bc+ac}{2}\)
Tiếp tục áp dụng AM-GM: \(ab+bc+ac\geq 3\sqrt[3]{a^2b^2c^2}=3\)
\(\Rightarrow \text{VT}\ge \frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi $a=b=c=1$
Lời giải:
Đặt vế trái là $A$
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}\right)(a+b+b+c+c+c)\geq (1+1+1+1+1+1)^2\)
\(\Leftrightarrow \frac{1}{a}+\frac{2}{b}+\frac{3}{c}\geq \frac{36}{a+2b+3c}\)
Hoàn toàn TT:
\(\frac{1}{b}+\frac{2}{c}+\frac{3}{a}\geq \frac{36}{b+2c+3a}\)
\(\frac{1}{c}+\frac{2}{a}+\frac{3}{b}\geq \frac{36}{c+2a+3b}\)
Cộng theo vế:
\(\Rightarrow 6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 36A\)
\(\Rightarrow A\leq \frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Theo đkđb: \(ab+bc+ac=abc\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Do đó: \(A\leq \frac{1}{6}< \frac{3}{16}\) (đpcm)
Ta có :
\(VT=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{4}{2ab}+\dfrac{4}{2bc}+\dfrac{4}{2ca}\)
Theo BĐT Cauchy schwarz dưới dạng engel ta có :
\(VT\ge\dfrac{\left(1+1+1+2+2+2\right)^2}{\left(a+b+c\right)^2}=\dfrac{81}{1}=81\)
Vậy BĐT đã được chứng minh . Dấu \("="\) xảy ra khi \(a=b=c=\dfrac{1}{3}\)
nếu dùng kỹ thuật chọn điểm rơi và đánh giá từ TBC sang TBN thì làm kiểu j v bn