\(0< x< y\) và \(2x^2+2y^2=5xy\) 

Tính 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

Ta có : b,  \((3x-2y)^2=9x^2-12xy+4y^2=20xy-12xy=8xy\)

\(\Rightarrow3x-2y=\sqrt{8xy}\)                             \((1)\)

\((3x+2y)^2=9x^2+12xy+4y^2=20xy+12xy=32xy\)

\(\Rightarrow3x+2y=\sqrt{32xy}\)                             \((2)\)

Từ \((1)\) và      \((2)\), suy ra :

\(\Rightarrow\frac{3x-2y}{3x+2y}=\frac{\sqrt{8xy}}{\sqrt{32xy}}=0,5\)

31 tháng 3 2017

a) = . = . = vì x > 0.

Do đó = .

b) = . = ..

Vì y < 0 nên │y│= -y. Do đó = . = .

c) 5xy. = 5xy. = 5xy..

Vì x < 0, y > 0 nên = -x và = .

Do đó: 5xy = 5xy. = -.

d) 0,2 = = 0,2 =

Nếu x > 0 thì > 0 nên . Do đó 0,2 = .

Nếu x < 0 thì < 0 nên . Do đó 0,2 = -.

14 tháng 8 2016

a/ \(\frac{y}{x}.\left(\sqrt{\frac{x^2}{y^4}}\right)=\frac{y}{x}.\frac{x}{y^2}=\frac{1}{y}\)

 

b/ \(2y^2.\sqrt{\frac{x^4}{4y^2}}=2y^2.\sqrt{\frac{\left(x^2\right)^2}{\left(-2y\right)^2}}=2y^2.\frac{x^2}{-2y}=-y.x^2\)

c/ \(5xy.\sqrt{\frac{25x^2}{y^6}}=5xy.\sqrt{\frac{\left(-5x\right)^2}{\left(y^3\right)^2}}=5xy.\frac{-5x}{y^3}=\frac{-25x^2}{y^2}\)

d/\(0,2.x^3y^3.\sqrt{\frac{4^2}{\left(x^2y^4\right)^2}}=\frac{1}{5}.x^3y^3.\frac{4}{x^2y^4}=\frac{4x}{5y}\)

 

 

 

14 tháng 8 2016

Trần Việt Linh sai phần b,c,d r bn

Sửa lại:

b) 2y\(^2\).\(\sqrt{\frac{x^4}{4y^2}}\) với y<0

Ta có : 2y\(^2\).\(\sqrt{\frac{x^4}{4y^2}}\)=2y\(^2\).\(\frac{x^2}{\left|y\right|}\)

Vì y>0 nên |y| = -y.Ta có : 2y\(^2\).\(\frac{x^2}{2\left|y\right|}\)= -2y\(^2\).\(\frac{x^2}{2y}\) = -2x\(^2\)y

c) 5xy.\(\sqrt{\frac{25x^2}{y^6}}\) với x<0,y>0

Ta có :5xy\(\sqrt{\frac{25x^2}{y^6}}\)=5xy.\(\frac{5\left|x\right|}{y^3}\) ( y>0)

Vì x<0 nên |x| =-x .Ta có : 5xy.\(\frac{5\left|x\right|}{y^3}\)= -5xy.\(\frac{5x}{y^3}\) =\(\frac{-25x^2}{y^2}\)

d) 0,,2x\(^3\)y\(^3\).\(\sqrt{\frac{16}{x^4y^8}}\) với x#o,y#0

Ta có: 0,2x\(^3\)y\(^3\)\(\frac{4}{x^2y^4}\)=\(\frac{0,8x}{y}\) ( vì #0,y#0)

 

bài 1: giải các hệ phương trình 1)\(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)=\(\dfrac{1}{2}\) x+y=9 2) \(\dfrac{2x+1}{4}-\dfrac{y-2}{3}=\dfrac{1}{12}\) \(\dfrac{x+5}{2}-\dfrac{y+7}{3}=-4\) 3)\(2|x|-y=3\) \(|x|+y=3\) 4)\(2\left(x+y\right)+\sqrt{x+1}=4\) \(\left(x+y\right)-3\sqrt{x+1}=-5\) 5) \(\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\) \(\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\) 6)\(\dfrac{1}{x}+\dfrac{3}{2y+1}=2\) \(\dfrac{2}{x}+\dfrac{4}{2y+1}=2\) 7)...
Đọc tiếp

bài 1: giải các hệ phương trình

1)\(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)=\(\dfrac{1}{2}\)

x+y=9

2) \(\dfrac{2x+1}{4}-\dfrac{y-2}{3}=\dfrac{1}{12}\)

\(\dfrac{x+5}{2}-\dfrac{y+7}{3}=-4\)

3)\(2|x|-y=3\)

\(|x|+y=3\)

4)\(2\left(x+y\right)+\sqrt{x+1}=4\)

\(\left(x+y\right)-3\sqrt{x+1}=-5\)

5) \(\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\)

\(\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\)

6)\(\dfrac{1}{x}+\dfrac{3}{2y+1}=2\)

\(\dfrac{2}{x}+\dfrac{4}{2y+1}=2\)

7) \(\dfrac{1}{x}+\dfrac{1}{y}=2\)

\(\dfrac{3}{x}-\dfrac{1}{y}=2\)

8)\(\dfrac{1}{x+2}+\dfrac{3}{2y-1}=4\)

\(\dfrac{4}{x+2}-\dfrac{1}{2y-1}=3\)

9)\(\dfrac{4}{x+y} +\dfrac{1}{y-1}=5\)

\(\dfrac{1}{x+y}-\dfrac{2}{y-1}=-1\)

10)\(\dfrac{7}{\sqrt{2x+3}}-\dfrac{4}{\sqrt{3}-y}=\dfrac{5}{3}\)

\(\dfrac{5}{\sqrt{2x+3}}+\dfrac{3}{\sqrt{3-y}}=\dfrac{13}{6}\)

11)\(\dfrac{3x}{x-1}-\dfrac{2}{y+2}=4\)

\(\dfrac{2x}{x-1}+\dfrac{1}{y+2}=5\)

12) \(\dfrac{7}{\sqrt{x}-7}-\dfrac{4}{\sqrt{y}+6}=\dfrac{5}{3}\)

\(\dfrac{5}{\sqrt{x}-7}+\dfrac{3}{\sqrt{y}+6}2\dfrac{1}{6}\)

13) \(3\sqrt{x-1}+2\sqrt{y}=13\)

\(2\sqrt{x-1}-\sqrt{y}=4\)

14) 6x + 6y = 5xy

\(\dfrac{4}{x}-\dfrac{3}{y}=1\)

1
24 tháng 2 2018

mọi người giúp mk với gianroi

câu 6 sai nha

sửa : \(\dfrac{1}{x}+\dfrac{3}{2y+1}=2\)

\(\dfrac{2}{x}+\dfrac{4}{2y+1}=3\)

10 tháng 7 2018

\(a.\sqrt{2a}.\sqrt{18a}=\sqrt{2a}.3\sqrt{2a}=3.2a=6a\)

\(b.\sqrt{3a.27ab^2}=\sqrt{9a^2b^2.9}=9\text{ |}ab\text{ |}\)

\(c.2y^2.\sqrt{\dfrac{x^4}{4y^2}}=2y^2.\dfrac{x^2}{-2y}=-x^2y\)

\(d.\dfrac{y}{x}.\sqrt{\dfrac{x^2}{y^4}}=\dfrac{y}{x}.\dfrac{x}{y^2}=\dfrac{1}{y}\)

\(e.\sqrt{\dfrac{9a^2}{16}}=\dfrac{3\text{ |}a\text{ |}}{4}\)

\(f.\sqrt{10.16a^2}=-4a\sqrt{10}\)

\(g.\sqrt{a^4\left(3-a\right)^2}=a^2\left(a-3\right)\)

\(h.\sqrt{\dfrac{2a^2b^4}{98}}\sqrt{\dfrac{a^2b^4}{49}}=\dfrac{b^2\text{ |}a\text{ |}}{7}\)

7 tháng 6 2017

a) \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}\)

\(=\dfrac{4a^2b^3}{8\sqrt{2}a^3b^3}\)

\(=\dfrac{1}{2\sqrt{2}a}\)

\(=\dfrac{\sqrt{2}}{4a}\)

b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)

chịu đấy :v

c) \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{x-2}{3-x}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{x-2}{-\left(x-3\right)}+\dfrac{x^2-1}{x-3}\)

\(=-\dfrac{x-2}{x-3}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{-\left(x-2\right)+x^2-1}{x-3}\)

\(=\dfrac{-x+1+x^2}{x-3}\)

d) \(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1^2\right)}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(x-1\right)^2}\)

\(=\dfrac{1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{x-1}\)

\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(\sqrt{y}-1\right)\left(x-1\right)}\)

\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{x\sqrt{y}-\sqrt{y}-x+1}\)

e) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)

\(=4x-2\sqrt{2}+\dfrac{\sqrt{x^2\cdot\left(x+2\right)}}{\sqrt{x+2}}\)

\(=4x-2\sqrt{2}+\sqrt{x^2}\)

\(=4x-2\sqrt{x}+x\)

\(=5x-2\sqrt{2}\)

8 tháng 6 2017

bạn ơi phần c mình sai đề bài.. bạn giúp mk giải lại đc k \(\sqrt{\dfrac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)

13 tháng 7 2018

\(a.x^2-2xy+6y^2-12x+2y+41\)

\(=x^2-2xy+y^2-12x+12y+36+5y^2-10y+5\)

\(=\left(x-y\right)^2-2.6\left(x-y\right)+36+5\left(y-1\right)^2\)

\(=\left(x-y-6\right)^2+5\left(y-1\right)^2\)\(0\)

\(b.\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}-\dfrac{2x}{y}-\dfrac{2y}{x}+3\)

\(=\dfrac{x^2}{y^2}-2.\dfrac{x}{y}+1+\dfrac{y^2}{x^2}-2.\dfrac{y}{x}+1+1\)

\(=\left(\dfrac{x}{y}-1\right)^2+\left(\dfrac{y}{x}-1\right)^2+1>0\)

13 tháng 7 2018

Dấu "=" xảy ra khi............. LL hết lười =))

21 tháng 7 2018

# Bài 1

* Ta cm BĐT sau \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) (1) bằng cách biến đổi tương đương

* Với \(x,y>0\) áp dụng (1) ta có

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{\left(\sqrt{x}\right)^2}+\dfrac{1}{\left(\sqrt{y}\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\)

\(\Rightarrow\) \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\le1\) \(\Leftrightarrow\) \(0< \dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\le1\) (I)

* Ta cm BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với \(a,b>0\) (2)

Áp dụng (2) với x , y > 0 ta có

\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\ge\dfrac{4}{\sqrt{x}+\sqrt{y}}\) (II)

* Từ (I) và (II) \(\Rightarrow\) \(\dfrac{4}{\sqrt{x}+\sqrt{y}}\le1\)

\(\Leftrightarrow\) \(\sqrt{x}+\sqrt{y}\ge4\)

Dấu "=" xra khi \(x=y=4\)

Vậy min \(\sqrt{x}+\sqrt{y}=4\) khi \(x=y=4\)

23 tháng 7 2017

a) \(\sqrt{\dfrac{9x^2}{25}}+\dfrac{1}{5}x\) (x<0)

=\(\dfrac{-3x}{5}+\dfrac{x}{5}\) (vì x<0)

=\(\dfrac{-2x}{5}\)

b)2xy\(\sqrt{\dfrac{9x^2}{y^6}}-\sqrt{\dfrac{49x^2}{y^2}}\) (x<0 , y>0)

=2xy\(\dfrac{-3x}{y^3}+\dfrac{7x}{y}\)(vì x<y<0)

=\(\dfrac{-6x}{y^2}+\dfrac{7xy}{y^2}\)

=\(\dfrac{7xy-6x}{y^2}\)

c) \(\dfrac{1}{ab}\sqrt{a^6\left(a-b\right)^2}\) (a<b<0)

=\(\dfrac{1}{ab}\sqrt{a^6}\sqrt{\left(a-b\right)^2}\)

=\(\dfrac{1}{ab}\left(-a^3\right)\left(b-a\right)\) (vì a<b<0)

=\(\dfrac{\left(a-b\right)a^3}{a-b}\)

=a3

24 tháng 7 2017

Cảm ơn bạn Thu Trang nhiều nhé, sau này có gì giúp đỡ nhau nha. vuivui