\(0< a\le\frac{1}{2}.\) Tìm GTNN của \(S=2a+\frac{1}{a^2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2020

Áp dụng bất đẳng thức AM - GM cho 3 số dương, ta được: \(S=2a+\frac{1}{a^2}=\left(\frac{1}{a^2}+8a+8a\right)-14a\ge3\sqrt[3]{\frac{1}{a^2}.8a.8a}-14.\frac{1}{2}=5\)

Đẳng thức xảy ra khi a = 1/2

14 tháng 8 2016

Dự đoán các biểu thức đạt GTLN / GTNN tại các mút hoặc tại các biến bằng nhau.

Việc còn lại là nhóm hợp lý sao cho dấu bằng xảy ra giống như dự đoán,

\(A=a^2+\frac{18}{a^2}=\left(\frac{18}{a^2}+\frac{a^2}{72}\right)+\frac{71a^2}{72}\ge2\sqrt{\frac{18}{a^2}.\frac{a^2}{72}}+\frac{71.6^2}{72}=\frac{73}{2}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}\frac{18}{a^2}=\frac{a^2}{72}\\a=6\end{cases}}\Leftrightarrow a=6\)

\(B=a+a+\frac{1}{8a^2}+\frac{7}{8a^2}\ge3\sqrt[3]{a.a.\frac{1}{8a^2}}+\frac{7}{8.\left(\frac{1}{2}\right)^2}=5\)

Dấu bằng xảy ra khi \(\hept{\begin{cases}a=\frac{1}{8a^2}\\a=\frac{1}{2}\end{cases}}\Leftrightarrow a=\frac{1}{2}\)

c. \(ab\le\frac{\left(a+b\right)^2}{4}\le\frac{1}{4}\), làm tương tự câu a, b

d.

\(t=\frac{a+b}{\sqrt{ab}}\ge\frac{2\sqrt{ab}}{\sqrt{ab}}=2\)

\(D=t+\frac{1}{t}\text{ }\left(t\ge2\right)\), làm tương tự câu a.

28 tháng 7 2017

b)Từ \(a+b+c=6\Rightarrow\left(a+b+c\right)^2=36\)

\(\Rightarrow36=a^2+b^2+c^2+2\left(ab+bc+ca\right)=P+ab+bc+ca\)

\(\Rightarrow P=36-ab-bc-ca\). Cần tìm \(GTNN\) của \(ab+bc+ca\)

Không mất tính tổng quát giả sử \(a=max\left\{a,b,c\right\}\)

\(\Rightarrow a+b+c=6\le3a\Rightarrow2\le a\le4\). Lại có:

\(ab+bc+ca\ge ab+ac=a\left(b+c\right)=a\left(6-a\right)\ge8\)

Suy ra GTNN của \(ab+bc+ca=8\Leftrightarrow\hept{\begin{cases}a=4\\b=2\\c=0\end{cases}}\)

Vậy GTLNP là \(36-8=28\) khi \(\hept{\begin{cases}a=4\\b=2\\c=0\end{cases}}\)

7 tháng 1 2020

4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)

\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)

\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)

Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)

Đẳng thức xảy ra khi ...(anh giải nốt ạ)

7 tháng 1 2020

@Cool Kid:

Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)

Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)

15 tháng 4 2019

Ta có:\(S=2a+\frac{1}{a^2}\)

\(A=8a+8a+\frac{1}{a^2}-14a\)

\(A\ge3\sqrt[3]{8a\cdot8a\cdot\frac{1}{a^2}}-14\cdot\frac{1}{2}\)

\(A\ge14-7=5\)

"="<=>a=1/2

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)