Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)
1:
\(n^2+4n+3\)
\(=n^2+3n+n+3\)
\(=\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=4\left(k+1\right)\left(k+2\right)\)
Vì k+1;k+2 là hai số nguyên liên tiếp
nên \(\left(k+1\right)\left(k+2\right)⋮2\)
=>\(4\left(k+1\right)\left(k+2\right)⋮8\)
hay \(n^2+4n+3⋮8\)
2: \(n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)
\(=2k\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)
=>\(k\left(k+1\right)\left(k+2\right)⋮6\)
=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)
hay \(n^3+3n^2-n-3⋮48\)
\(1.a,10^n-1=100..0-1\)(n chữ số 0)=999..99(n chữ số 9)chia hết cho (vì có tổng bằng 9+9+..+9 chia hết cho 9)
\(b,10^n+8=100..0+8\)(n chữ số 0) = 1000...08.
Tổng các chữ số là: 1+0+0+...+8=9 chia hết cho 9.
2.
Tạm thời mik chỉ bik lm bài 1 nên pn thông cảm nhé
1 a) pn thao khảo tại nhé do ở đây có bài giống nên mik gửi link luôn nhé! http://olm.vn/hoi-dap/question/651590.html
b) Ta có: 10n+8= 1000000000000.......000+8
n chữ số 0
=> 10n+8= 10000000000........008
n chữ số 8
Ta có tổng các chữ số của 10n+8 bằng: 1+00000000.....000 ( Với n chữ số 0)+8= 1+0+8=9
Vì 9 chia hết cho 9 => 10n+8 chia hết cho 9
10n - 36n - 1
= 10n - 1 - 9n - 27n
= 1000...0 - 1 - 9n - 27n
(n c/s 0)
= 999...9 - 9n - 27n
(n c/s 9)
= 9.(111...1 - n) - 27n
(n c/s 1)
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 mà tổng các chữ số của 111...1 (n c/s 1) là n
=> 111...1 - n chia hết cho 3
(n c/s 1)
=> 9.(111...1 - n) chia hết cho 27; 27n chia hết cho 27
(n c/s 1)
=> 10n - 36n - 1 chia hết cho 27 (đpcm)
b. Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath
46^n + 296*13^n = (46^n - 13^n) + 297*13^n = (46 - 13)*A + 9*33*13^n = 33*(A + 9*13^n) chia hết cho 33
46^n + 296*13^n = (46^n + 13^n) + 295*13^n = (46 + 13)*B + 59*5*13^n = 59*(B + 5*13^n) chia hết cho 59
Do 33 và 59 nguyên tố cùng nhau nên 46^n + 296*13^n chia hết cho 33*59 = 1947