\(\chi\exists\Omega\Delta\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 4 2019

Ý bạn là phương trình đường thẳng?

Gọi \(M\left(x;y\right)\) là điểm thuộc \(\Delta\)\(M'\left(x';y'\right)\) là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow\left\{{}\begin{matrix}x'=x-3\\y'=y+2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=x'+3\\y=y'-2\end{matrix}\right.\)

\(\Rightarrow\left(x'+3\right)-3\left(y'-2\right)+6=0\)

\(\Leftrightarrow x'-3y'+15=0\)

Vậy phương trình \(\Delta':\) \(x-3y+15=0\)

27 tháng 4 2016

Gọi \(M\left(x_0;y_0\right)\)là tiếp điểm. Ta có : \(y'=-3x^2+3\)

a) Vì tiếp tuyến vuông góc với đường thẳng \(x+y-1=0\Rightarrow y=-x+1\) nên ta có :

\(y'\left(x_0\right)=1\Leftrightarrow-3x^2_0+3=1\Leftrightarrow x_0=\pm\frac{\sqrt{6}}{3}\)

\(x_0=\frac{\sqrt{6}}{3}\Rightarrow y_0=\frac{18+7\sqrt{6}}{9}\) nên ta có phương trình tiếp tuyến 

                                       \(y=\left(x-\frac{\sqrt{6}}{3}\right)+\frac{18+7\sqrt{6}}{9}=x+\frac{18+7\sqrt{6}}{9}\)

\(x_0=-\frac{\sqrt{6}}{3}\Rightarrow y_0=\frac{18-7\sqrt{6}}{9}\) nên ta có phương trình tiếp tuyến 

                                       \(y=\left(x+\frac{\sqrt{6}}{3}\right)+\frac{18-7\sqrt{6}}{9}=x+\frac{18-7\sqrt{6}}{9}\)

 
b) Ta có \(y'=-3x^2_0+3\le3\) với mọi \(x_0\Rightarrow maxy'=3\) đạt được khi \(x_0=0\)
Tiếp tuyến có hệ số góc nhỏ nhất có tiếp điểm là \(M\left(0;2\right)\) và \(y'\left(x_0\right)=3\) nên ta có phương trình : \(y=3x+2\)
 
c) Gọi hệ số góc của tiếp tuyến là k thì \(\overrightarrow{n}\left(k;-1\right)\) là vectơ pháp tuyến của \(\Delta\)

Vì \(\Delta\) tạo với \(\Delta'\) một góc bằng \(45^0\) nên \(\frac{\left|k-1\right|}{\sqrt{k^2+1}.\sqrt{2}}=\frac{\sqrt{2}}{2}\Leftrightarrow k=0\)

Ta có \(f'\left(x_0\right)=k\Leftrightarrow-3x^2_0+3=0\Leftrightarrow x_0=\pm1\)

\(x_0=1\Rightarrow y_0=4\Rightarrow\Delta:y-4=0\)

\(x_0=-1\Rightarrow y_0=-2\Rightarrow\Delta:y+2=0\)

 
 
 

 

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Cho hai đường thăng \(\Delta\) và \(\Delta'\) chéo nhau nhận AA' làm đoạn vuông góc chung, trong đó A thuộc \(\Delta\)  và A' thuộc \(\Delta'\). Gọi (P) là mặt phẳng qua A vuông góc với \(\Delta'\) và d là hình chiếu vuông góc của \(\Delta\) trên mặt phẳng (P). Đặt AA' = a, góc nhọn giữa \(\Delta\) và d là \(\alpha\). Mặt phẳng (Q) song song với mặt phẳng (P) cắt \(\Delta\) và \(\Delta'\) lần lượt tại...
Đọc tiếp

Cho hai đường thăng \(\Delta\) và \(\Delta'\) chéo nhau nhận AA' làm đoạn vuông góc chung, trong đó A thuộc \(\Delta\)  và A' thuộc \(\Delta'\). Gọi (P) là mặt phẳng qua A vuông góc với \(\Delta'\) và d là hình chiếu vuông góc của \(\Delta\) trên mặt phẳng (P). Đặt AA' = a, góc nhọn giữa \(\Delta\) và d là \(\alpha\). Mặt phẳng (Q) song song với mặt phẳng (P) cắt \(\Delta\) và \(\Delta'\) lần lượt tại M và M'. Gọi \(M_1\) là hình chiếu vuông góc của M trên mặt phẳng (P)

a) Chứng minh 5 điểm A, A', M, M', \(M_1\) cùng nằm trên mặt cầu (S). Xác định tâm O của (S). Tính bán kính của (S) theo \(a,\alpha\) và khoảng cách x giữa hai mặt phẳng (P), (Q) ?

b) Khi x thay đổi, tâm O mặt cầu (S) di động trên đường nào ? Chứng minh rằng khi (Q) thay đổi mặt cầu (S) luôn luôn đi qua một đường tròn cố định

1
20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

26 tháng 5 2017

Hình giải tích trong không gian

25 tháng 3 2016

Từ giả thiết ta được :

\(\left(z-\omega^k\right)\left(\overline{z-\omega}^k\right)\le1\Rightarrow\left|z\right|^2\le z\overline{\omega^k}+\overline{z}\omega^k,k=0,1,.....,n-1\)

Lấy tổng các hệ thức trên,

\(n\left|z\right|^2\le z\left(\overline{\Sigma_{k=0}^{n-1}\omega^k}\right)+\overline{z}\Sigma_{k=0}^{n-1}\) \(\omega=0\)

Do đó z=0

26 tháng 5 2017

Hình giải tích trong không gian

Hình giải tích trong không gian

26 tháng 5 2017

Hình giải tích trong không gian

27 tháng 4 2016

Tập xác định : \(D=R\)

Gọi tiếp điểm là \(M\left(x_0;y_0\right);y'=-4x^3-x\)

Hệ số gọc của \(\Delta\) là \(k=y'\left(x_0\right)\)

a) Vì  \(\Delta\perp d\)  nên \(\frac{1}{5}.k=-1\Leftrightarrow k=-5\Leftrightarrow-4x^3_0-x_0=-5\Leftrightarrow x_0=1\)

\(x_0=1\Rightarrow y\left(x_0\right)=\frac{9}{2}\Rightarrow\Delta:y=-5\left(x-1\right)+\frac{9}{2}\Leftrightarrow\Delta:y=-5x+\frac{19}{2}\)

Vậy tiếp tuyến vuông góc với d của (C) là \(\Delta:y=-5x+\frac{19}{2}\)

b) Phân giác của 2 đường \(d_1;d_2\) là :

\(\frac{\left|2x-y+2\right|}{\sqrt{5}}=\frac{\left|x-2y+3\right|}{\sqrt{5}}\Leftrightarrow\left[\begin{array}{nghiempt}y=-x+1\\y=x+\frac{5}{3}\end{array}\right.\)

Từ giả thiết suy ra \(\Delta\)  vuông góc với các đường phân giác của  \(d_1;d_2\) nên hệ số góc của \(\Delta\) là \(\pm1\) ( \(\Delta\)  không đi qua giao điểm của   \(d_1;d_2\))

* Trường hợp 1: Với k = 1 ta có \(-4x_0^3-x_0=1\Leftrightarrow x_0=-\frac{1}{2}\Rightarrow y_0=\frac{93}{16}\)

                        Suy ra \(\Delta:y-\frac{93}{16}=x+\frac{1}{2}\) hay \(y=x+\frac{101}{16}\)

* Trường hợp 2: Với k = -1 ta có \(-4x_0^3-4x_0=-1\Leftrightarrow x_0=\frac{1}{2}\)

                        Suy ra \(\Delta:y-\frac{93}{16}=x-\frac{1}{2}\) hay \(y=x+\frac{85}{16}\)