Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2+3x+9}{2x+10}.\frac{x+5}{x^3-27}\)
\(=\frac{x^2+3x+9}{2\left(x+5\right)}.\frac{x+5}{\left(x-3\right)\left(x^2+3x+9\right)}\)
\(=\frac{\left(x+5\right)\left(x^2+3x+9\right)}{2\left(x+5\right)\left(x-3\right)\left(x^2+3x+9\right)}\)
\(=\frac{1}{2\left(x-3\right)}\)
\(\left(\frac{6x+1}{x^2-6x}+\frac{6x-1}{x^2+6x}\right)\left(\frac{x^2-36}{x^2+1}\right)\)
\(=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right]\left[\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\right]\)
\(=\frac{\left(6x+1\right)\left(x+6\right)+\left(6x-1\right)\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\frac{12x^2+12}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\frac{12\left(x^2+1\right).\left(x-6\right)\left(x+6\right)}{x\left(x-6\right)\left(x+6\right)\left(x^2+1\right)}\)
\(=\frac{12}{x}\)
a: \(=\dfrac{x}{y\left(x-y\right)}+\dfrac{2x-y}{y\left(x-y\right)}=\dfrac{x+2x-y}{y\left(x-y\right)}=\dfrac{3x-y}{y\left(x-y\right)}\)
b: \(=\dfrac{x\left(x+3\right)}{\left(x+3\right)^2}+\dfrac{3}{x-3}-\dfrac{6x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x}{x+3}+\dfrac{3}{x-3}-\dfrac{6x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x^2-3x+3x+9-6x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{x-3}{x+3}\)
c: \(=\dfrac{x+9}{\left(x-3\right)\left(x+3\right)}-\dfrac{3}{x\left(x+3\right)}\)
\(=\dfrac{x^2+9x-3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x^2+9x-3x+9}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{x+3}{x-3}\)
d: \(=\dfrac{x^2-1-x^2+4}{x+1}=\dfrac{3}{x+1}\)
a: \(=\dfrac{x^3-x^2+x-1}{\left(x-2\right)\left(x+2\right)}-\dfrac{x-2}{\left(x+2\right)\left(x+1\right)}-\dfrac{3x}{\left(x-2\right)\left(x+1\right)}+\dfrac{2x+5}{\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{\left(x-1\right)\left(x^2+1\right)\left(x+1\right)-x^2+4x-4-3x^2-6x+2x+5}{\left(x+2\right)\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{x^4-1-4x^2+1}{\left(x+2\right)\left(x-2\right)\left(x+1\right)}=\dfrac{x^2\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)\left(x+1\right)}\)
=x^2/x+1
b: Sửa đề: \(\dfrac{19x^2-30x+9}{2x^3+54}-\dfrac{x-3}{2x^2+6x}-\dfrac{3x^2}{2x^2-6x+18}\) \(=\dfrac{19x^2-30x+9}{2\left(x+3\right)\left(x^2-3x+9\right)}-\dfrac{x-3}{2x\left(x+3\right)}-\dfrac{3x^2}{2\left(x^2-3x+9\right)}\)
\(=\dfrac{19x^3-30x^2+9x-\left(x-3\right)\left(x^2-3x+9\right)-3x^3\left(x+3\right)}{2x\left(x+3\right)\left(x^2-3x+9\right)}\)
\(=\dfrac{19x^3-30x^2+9x-3x^4-9x^3-\left(x^3-3x^2+9x-3x^2+9x-27\right)}{2x\left(x+3\right)\left(x^2-3x+9\right)}\)
\(=\dfrac{-3x^4+10x^3-30x^2+9x-x^3+6x^2-18x+27}{2x\left(x+3\right)\left(x^2-3x+9\right)}\)
\(=\dfrac{-3x^4+10x^3-24x^2-9x+27}{2x\left(x+3\right)\left(x^2-3x+9\right)}\)
1.
a) \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
b) \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Bài 1:
a, \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
Vậy \(x=-4\) hoặc \(x=-1\)
b, \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x=3\) hoặc \(x=-2\)
a) \(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}=\dfrac{\left(x-3\right)^2-x^2+9}{x\left(x-3\right)}=\dfrac{x^2-6x+9-x^2+9}{x\left(x-3\right)}=\dfrac{18-6x}{x\left(x-3\right)}=\dfrac{-6\left(x-3\right)}{x\left(x-3\right)}=\dfrac{-6}{x}\)b) \(\dfrac{1}{x-2}-\dfrac{6x}{x^3-8}+\dfrac{x-2}{x^2+2x+4}=\dfrac{x^2+2x+4+\left(x-2\right)^2-6x}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{x^2-4x+4+\left(x-2\right)^2}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{\left(x-2\right)^2+\left(x-2\right)^2}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{2\left(x-2\right)^2}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{2\left(x-2\right)}{x^2+2x+4}\)
\(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}=\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x\left(x-3\right)}=\dfrac{\left(x-3\right).\left(x-3\right)}{x.\left(x-3\right)}-\dfrac{x.x}{\left(x-3\right).x}+\dfrac{9}{x.\left(x-3\right)}=\dfrac{x^2-6x+9}{x.\left(x-3\right)}-\dfrac{x^2}{x.\left(x-3\right)}+\dfrac{9}{x.\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{x.\left(x-3\right)}-\dfrac{x^2}{x.\left(x-3\right)}+\dfrac{9}{x.\left(x-3\right)}=\dfrac{\left(x-3\right)^2-x^2+9}{x.\left(x-3\right)}\)
a) \(\dfrac{x}{x-3}+\dfrac{9-6x}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9-6x}{x\left(x-3\right)}=\dfrac{x^2-6x+9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)
a) Mk làm luôn nhé , không chép lại đề đâu
\(\dfrac{4}{x^2-x+4x-4}-\dfrac{2}{\left(x-1\right)^2}\)
\(=\dfrac{4}{x\left(x-1\right)+4\left(x-1\right)}-\dfrac{2}{\left(x-1\right)^2}\)
\(=\dfrac{4}{\left(x-1\right)\left(x+4\right)}-\dfrac{2}{\left(x-1\right)^2}=\dfrac{4\left(x-1\right)-2\left(x+4\right)}{\left(x-1\right)^2\left(x+4\right)}\)
\(=\dfrac{4x-4-2x-8}{\left(x-1\right)^2\left(x+4\right)}=\dfrac{2x-12}{\left(x-1\right)^2\left(x+4\right)}\)
b) Tương tự