Chiếc đèn ông sao ở hình bên có bao nhiêu h...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

bài này dễ mà bạn

26 tháng 12 2021

(-4;-3;-2;-1;0;1;2;3;4)

Ko có dấu ngoặc nhọn nên mik xài ngoặc tròn nha

a) \(B=3+3^2+3^3+...+3^{120}\)

\(B=3\cdot1+3\cdot3+3\cdot3^2+...+3\cdot3^{119}\)

\(B=3\cdot\left(1+3+3^2+...+3^{119}\right)\)

Suy ra B chia hết cho 3 (đpcm)

b) \(B=3+3^2+3^3+...+3^{120}\)

\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+...+\left(3^{119}+3^{120}\right)\)

\(B=\left(1\cdot3+3\cdot3\right)+\left(1\cdot3^3+3\cdot3^3\right)+\left(1\cdot3^5+3\cdot3^5\right)+...+\left(1\cdot3^{119}+3\cdot3^{119}\right)\)

\(B=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+3^5\cdot\left(1+3\right)+...+3^{119}\cdot\left(1+3\right)\)

\(B=3\cdot4+3^3\cdot4+3^5\cdot4+...+3^{119}\cdot4\)

\(B=4\cdot\left(3+3^3+3^5+...+3^{119}\right)\)

Suy ra B chia hết cho 4 (đpcm)

c) \(B=3+3^2+3^3+...+3^{120}\)

\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)

\(B=\left(1\cdot3+3\cdot3+3^2\cdot3\right)+\left(1\cdot3^4+3\cdot3^4+3^2\cdot3^4\right)+...+\left(1\cdot3^{118}+3\cdot3^{118}+3^2\cdot3^{118}\right)\)

\(B=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+3^7\cdot\left(1+3+9\right)+...+3^{118}\cdot\left(1+3+9\right)\)

\(B=3\cdot13+3^4\cdot13+3^7\cdot13+...+3^{118}\cdot13\)

\(B=13\cdot\left(3+3^4+3^7+...+3^{118}\right)\)

Suy ra B chia hết cho 13 (đpcm)

7 tháng 7 2017

3/ Chu vi hình chữ nhật:

\(\left(\dfrac{1}{4}+\dfrac{3}{10}\right)\cdot2=\dfrac{11}{10}\) (chưa biết đơn vị)

Diện tích hình chữ nhật:

\(\dfrac{1}{4}\cdot\dfrac{3}{10}=\dfrac{11}{20}\) (chưa biết đơn vị)

7 tháng 7 2017

Đơn vị trong ngoặc ghi là đơn vị diện tích nhá!

7 tháng 3 2019

b) Có: \(\widehat{xOz}+\widehat{yOz}=\widehat{yOz}+\widehat{yOt}=90^o\)

\(\Rightarrow\widehat{xOz}=\widehat{yOt}\)(cùng phụ \(\widehat{yOz}\))

c)Gọi Om là tia p/g \(\widehat{yOz}\).

Có: \(\widehat{xOz}+\widehat{zOm}=\widehat{mOy}+\widehat{yOt}\)(Vì \(\widehat{xOz}=\widehat{yOt};\widehat{zOm}=\widehat{mOy}\))

\(\Rightarrow\widehat{xOm}=\widehat{mOt}\)

\(\Rightarrow\)Om là tia p/g của \(\widehat{xOt}\).

20 tháng 4 2017

Hop so be nhat la 4

Ta co: 2015=4+4+4+...+4+15 (500 so 4)

Vi 4 va 15 la hop so

Vay co tat ca 501 cach viet

Tick cho minh nhe

20 tháng 4 2017

Hợp số bé nhất là 4

> Ta có:2015=4+4+4+....+4+15( có tất cả 500 số 4)

Vì ta thấy 4 và 15 là hợp số

vậy nên suy ra ta sẽ có tất cả 501 cách viết

Tick mink nhé @Trịnh Minh Thành

15 tháng 4 2017

Phép trừ và phép chia. Luyện tập 1. Luyện tập 2

27 tháng 9 2020

Cột 1 :

- Ta có : `392 = 28.14`

`=> q = 14 ; r = 0`

Cột 2 :

- Ta có : `278 = 13.21 + 5`

`=> q = 21 ; r = 5`

Cột 3 :

- Ta có : `357 = 21.17`

`=> q = 17 ; r = 0`

Cột 4 :

`a = 25.14 + 10`

`=> a = 360`

Cột 5 :

`b = 420 : 12`

`=> b = 35`

20 tháng 3 2017

\(A=2.\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+...+\dfrac{1}{95.98}\right)\)

\(A=\dfrac{2}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+....+\dfrac{3}{95.98}\right)\)

\(A=\dfrac{2}{3}\left(\dfrac{1}{2}-\dfrac{1}{98}\right)\)

\(A=\dfrac{2}{3}\dfrac{24}{49}=\dfrac{16}{49}\)

20 tháng 3 2017

Ta có: A=\(\dfrac{2}{2.5}+\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{95.98}\)

\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{95.98}\right)\)\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{98}\right)\)\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{1}{2}-\dfrac{1}{98}\right)\)

\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{49}{98}-\dfrac{1}{98}\right)\)

\(\Rightarrow A=\dfrac{3}{2}.\dfrac{48}{98}\)

\(\Rightarrow A=\dfrac{3.2.2.12}{2.2.49}\)

\(\Rightarrow A=\dfrac{36}{49}\)

\(\Leftrightarrow n^2+4n+3n+12-10⋮n+4\)

\(\Leftrightarrow n+4\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

hay \(n\in\left\{1;6\right\}\)

7 tháng 2 2017

Ta có : \(\overline{abcdeg}=\overline{ab}.1000+\overline{cd}.100+\overline{eg}\)

\(=9999.\overline{ab}+\overline{ab}+99.\overline{cd}+\overline{cd}+\overline{eg}\)

\(=\left(9999.\overline{ab}+99.\overline{cd}\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)

Vì : \(9999.\overline{ab}+99.\overline{cd}⋮11\)\(\overline{ab}+\overline{cd}+\overline{eg}⋮11\)

\(\Rightarrow\overline{abcdeg}⋮11\left(đpcm\right)\)

7 tháng 2 2017

Ta có:

\(\overline{abcdeg}=\overline{ab}.10000+\overline{cd}.100+\overline{eg}\)

\(=\overline{ab}.9999+\overline{ab}+\overline{cd}.99+\overline{cd}+\overline{eg}\)

\(=\overline{ab}.11.909+\overline{cd}.11.9+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)

\(=11\left(\overline{ab}.909+\overline{cd}.9\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)

\(11\left(\overline{ab}.909+\overline{cd}.9\right)⋮11\)\(\overline{ab}+\overline{cd}+\overline{eg}⋮11\)

nên \(\overline{abcdeg}⋮11\)

Vậy nếu \(\overline{ab}+\overline{cd}+\overline{eg}⋮11\) thì \(\overline{abcdeg}⋮11\) (đpcm)