Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 phần tỉ lệ nghịch với 2;3;5 lần lượt là a;b;c (a + b + c = 310)
Ta có: a x 2 = b x 3 = c x 5
=> \(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{5}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta suy ra:
\(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{5}}=\frac{a+b+c}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{310}{\frac{31}{30}}=300\)
=> a = 300 x 1/2 = 150
=> b = 300 x 1/3 = 100
=> c = 300 x 1/5 = 60
Vậy chia số 310 được 150;100;60 tỉ lệ nghịch với 2;3;5
a) Gọi a,b,c lần lượt là 3 phần của số18 ( a,b,c>0)
Theo đề bài ta có:
a,b,c tỉ lệ nghịch với 3;4;6
a+b+c=18
--> a.3=b.4=c.6 va a+b+c=18
--> a.312 =b.412 =c.612 va a+b+c=18
-> a4 =b3 =c2 va a+b+c=18
Áp dụng tính chất dãy tỉ sô bằng nhau ta có:
a4 =b3 =c2 =a+b+c4+3+2 =189 =2
-> a/4=2 =>a=4.2=8
b/3=2->b=3.2=6
c/2=2->c=2.2=4
b) Tương tự(Bạn tự làm giúp mk nha!)
c) Gọi a,b,c ( m) lần lượt là độ dài của ba cạnh(a,b,c>0)
Theo đề bài ta có:
a,b,c tỉ lệ thuận với 5,13,12 va a+b+c=156
--> a5 =b13 =c12 =a+b+c5+13+12 =15630 =265
--> a/5 =26/5--> a=26
b/13=26/5-> b=338/5
c/12=26/5-> c=312/5
Vậy độ dài 3 cạnh lần lượt là 26cm ,338/5 cm, 312/5 cm
d) Gọi a,b,c (cm) lần lượt là độ dài 3 cạnh của tam giác đó ( a,b,c>0)
Theo đề bài ta có:
a,b,c tỉ lệ nghịch 8,9,12 va a+b+c=52
-> a.8=b.9=c.12 va a+b+c=42
-> a.872 =b.972 =c.1272 va a+b+c=52
->a9 =b8 =c6 va a+b+c=52
Còn phần sau đó bạn tự giải giúp mk nha!
Chúc bạn học tốt!
Gọi 3 số cần tìm là a;b và c.
Ta có số thứ nhất và số thứ hai tỉ lệ nghịch với 5 và 2.
=> a và b tỉ lệ thuận với\(\frac{1}{5}\)và \(\frac{1}{2}\)
=> \(\frac{a}{\frac{1}{5}}=\frac{b}{\frac{1}{2}}\)
Ta có : b và c tỉ lệ nghịch với 3 và 7 .
=>\(\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{7}}\).
=> \(\frac{a}{\frac{1}{15}}=\frac{b}{\frac{1}{6}}=\frac{c}{\frac{1}{14}}.\)
=>\(\frac{a+b+c}{\frac{1}{15}+\frac{1}{6}+\frac{1}{14}}\)
=>\(\frac{640}{\frac{32}{105}}=2100\)
=> a = \(2100\times\frac{1}{15}=140\)
=> b =\(2100\times\frac{1}{6}=350\)
=> c = \(2100\times\frac{1}{14}=150.\)
Answer:
Câu 1:
Gọi ba phần được chia từ số 470 lần lượt là x, y, z
Có: Ba phần tỉ lệ nghịch với 3, 4, 5
\(\Rightarrow x3=y4=z5\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\) và \(x+y+z=470\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{20+15+12}=\frac{470}{47}=10\)
\(\Rightarrow\hept{\begin{cases}x=200\\y=150\\z=120\end{cases}}\)
Câu 2:
Gọi ba phần được chia từ số 555 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\4x=5y=6z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=\frac{x}{15+12+10}=\frac{555}{35}=\frac{111}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1665}{7}\\y=\frac{1332}{7}\\z=\frac{1110}{7}\end{cases}}\)
Câu 3:
Gọi ba phần được chia từ số 314 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2}{3}x=\frac{2}{5}y=\frac{3}{7}z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2x}{3}=\frac{2y}{5}=\frac{3z}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{x}{9}=\frac{y}{15}=\frac{z}{14}=\frac{x+y+z}{9+15+14}=\frac{314}{38}=\frac{157}{19}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1413}{19}\\y=\frac{2355}{19}\\z=\frac{2198}{19}\end{cases}}\)
Giải:
Gọi 3 số cần tìm là a, b, c
a) Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và a + b + c = 310
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{310}{10}=31\)
\(\Rightarrow a=62,b=93,c=155\)
Vậy 3 phần đó lần lượt là 62; 93; 155
b) Ta có: \(2a=3b=5c\Rightarrow\frac{2a}{30}=\frac{3b}{30}=\frac{5c}{30}\Rightarrow\frac{a}{15}=\frac{b}{10}=\frac{c}{6}\) và a + b + c = 310
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{15}=\frac{b}{10}=\frac{c}{6}=\frac{a+b+c}{15+10+6}=\frac{310}{31}=10\)
\(\Rightarrow a=150;b=100;c=60\)
Vậy 3 phần đó lần lượt là 150; 100; 60