K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2019

[ 5(a-b)3 + 2(a-b)2 ] : (b-a)2

[  5(a-b)3 + 2(a-b)2 ] : (b-a)2

=5 (a-b) + 2

16 tháng 10 2019

Cho a - b = z

\(\Rightarrow\)( 5z+ 2z2 ) ÷ z2

\(\Rightarrow\)5z÷ z+ 2z÷ z2

\(\Rightarrow\)5z + 2

10 tháng 12 2019

giúp tôi với :((

4 tháng 10 2017

A = 5xny3 chia hết cho B = 4x3y

ta có

5xny3 : 4x3y = \(\dfrac{5}{4}\) xn-3y2

để A chia hết cho B thì n - 3 \(\ge\) 0

n \(\ge\) 3

4 tháng 10 2017

https://hoc24.vn/id/258176

22 tháng 12 2020

a) \(\left(x^4-x^3+6x^2-x+a\right)⋮\left(x^2-x+5\right)=x^2+1\) (dư a - 5)

Để đa thức chia hết \(\Leftrightarrow a-5=0\Leftrightarrow a=5\)

b) \(\left(2x^3-3x^2+x+a\right)⋮\left(x+2\right)=2x^2-7x+15\) (dư a - 30)

Để đa thức chia hết \(\Leftrightarrow a-30=0\Leftrightarrow a=30\)

28 tháng 12 2016

a) \(2x^2\left\{x^2+5x+6\right\}\)=\(2x^4+10x^3+12x^2\)

b) \(15x^2y^4:10x^2y\)=\(\frac{3}{2}y^3\)

c) \(\left\{16x^3y^2+20x^2y^3-8xy\right\}:4xy\)=\(4x^2y+5xy^2-2\)

20 tháng 5 2016

x^4 -x^3+6x^2-x+a x^2-x+5 x^2 x^4-x^3+5x^2 x^2 +1 x^2 -x+a -x+5 a-5

\(x^4-x^3+6x^2-x+a=\left(x^2+1\right)\left(x^2-x+5\right)+a-5\)

Để đa thức \(x^4-x^3+6x^2-x+a\) chia hết cho đa thức \(x^2-x+5\) 

\(\Rightarrow a-5=0\Leftrightarrow a=5\)

b, Đặt \(2x^3-3x^2+x+a=f\left(x\right)\) và \(x+2=g\left(x\right)\)

Theo dịnh lí Bơ du ta có 

Xét \(g\left(x\right)=0\Rightarrow x+2=0\Rightarrow x=-2\)

Để \(f\left(x\right)\) chia hết cho \(g\left(x\right)\) thì \(f\left(-2\right)=0\)

\(f\left(-2\right)=2.\left(-2\right)^3-3.\left(-2\right)^2-2+a=0\)

\(\Rightarrow f\left(x\right)=-16-12-2+a=0\)

\(\Rightarrow f\left(x\right)=-30+a=0\)

\(\Rightarrow a=30\)

Vậy \(a=30\) thì \(f\left(x\right)\) chia hết cho \(g\left(x\right)\)

20 tháng 5 2016

Câu b) Thay x=-2 vào rồi giải theo phương pháp giá trị riêng

20 tháng 5 2016

a) Cho x- x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }

Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x- x+ 6x2- x sẽ luôn được kết quả là -5

=>-5 +a=0 => a=5

b) Cho x+2=0 => x=-2

Thay giá trị của x vào biểu thức 2x-  3x+ x sẽ được kết quả là -30

=> -30 + a=0 => a=30 

a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)

Thay n= \(\frac{-1}{3}\)vào biểu thức 3n+ 10n2 -5 sẽ được kết quả -4

Vậy n = -4

b) Cho n-1=0 => n=1

 Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1

Vậy n = 1

3 tháng 11 2019

x^2+5 x^4+2x^3+10x+a x^2+2x-5 x^4+5x^2 2x^3-5x^2+10x+a 2x^3 +10x -5x^2+a -5x^2-25 a+25

Để  x4+2x3+10x+a chia hết cho đa thức x2+5 thì

\(a+25=0\Leftrightarrow a=-25\)

14 tháng 11 2022

a: \(\Leftrightarrow x^3+2x^2-3x^2-6x+5x+10+a-10⋮x+2\)

=>a-10=0

=>a=10

b: \(\Leftrightarrow x^3+x^2+x+\left(a-1\right)x^2+\left(a-1\right)x+a-1+\left(2-a\right)x+b-a+1⋮x^2+x+1\)

=>2-a=0 và b-a+1=0

=>a=2; b=a-1=2-1=1

3 tháng 11 2019

Đa thức \(x^2-1\)có nghiệm \(\Leftrightarrow x^2-1=0\)

\(\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)

-1 và 1 là hai nghiệm của đa thức \(x^2-1\)

Để đa thức \(2x^3-x^2+ax+b\)chia hết cho đa thức \(x^2-1\)thì -1 và 1 cũng là hai nghiệm của đa thức \(2x^3-x^2+ax+b\)

Nếu x = -1 thì \(-2-1-a+b=0\Leftrightarrow a-b=-3\)(1)

Nếu x = 1 thì \(2-1+a+b=0\Leftrightarrow a+b=-1\)(2)

Từ (1) và (2) suy ra \(\hept{\begin{cases}a=\frac{-3-1}{2}=-2\\b=\frac{-1+3}{2}=1\end{cases}}\)

Vậy a = -2, b = 1