Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, S= 2+2^2+2^3+....+2^2001+2^2002
= (2+2^2)+(2^3+2^4)+...+(2^2001+2^2002)
= (2+2^2)+2^2.(2+2^2)+...+2^2000.(2+2^2)
= (2+2^2). (1+2^2+...+2^2000)
= 6. (1+2^2+...+2^2000) chia hết cho 6 (ĐPCM)
a) đặt a=3k(k thuộc z)
ta có: a^2=(3k)^2=9K^2
=>a^2 chia hết cho 3
b)n^2+25-10n=(n-5)^2
=>(n-5)^2 là số chính phương
mặt khác 2006 ko phải là số chính phương nên ko tồn tại số nguyên n
Bạn ghi đề nhớ để dấu cho đúng nhé.
\(1.\) Cho \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\) \(\left(1\right)\)
\(CMR:\) \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)
\(----------------------\)
Ta có:
Từ \(\left(1\right)\) \(\Rightarrow\) \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)
\(\Leftrightarrow\) \(\frac{a^2}{b+c}+\frac{ab}{c+a}+\frac{ca}{a+b}+\frac{ab}{b+c}+\frac{b^2}{c+a}+\frac{bc}{a+b}+\frac{ca}{b+c}+\frac{bc}{c+a}+\frac{c^2}{a+b}=a+b+c\)
\(\Leftrightarrow\) \(\frac{a^2}{b+c}+\left(\frac{ab}{b+c}+\frac{ca}{b+c}\right)+\frac{b^2}{c+a}+\left(\frac{ab}{c+a}+\frac{bc}{c+a}\right)+\frac{c^2}{a+b}+\left(\frac{ca}{a+b}+\frac{bc}{a+b}\right)=a+b+c\)
\(\Leftrightarrow\) \(\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)
\(\Leftrightarrow\) \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\) \(\left(đpcm\right)\)