K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2015

a) 22002 + 22001 = 22001(2 + 1) = 22001.3 = 22000.(2.3) = 22000.6 chia hết cho 6

b) 31000 + 3999  = 3999(3 + 1) = 3999.4 = 3998.(3.4) = 3998.12 chia hết cho 12

3 tháng 7 2017

3. 1998=a+b+c (a,b,c\(\in N\))

Xét a^3+b^3+c^3 - (a+b+c)=a(a-a)(a+1)+b(b-1)(b+1)+c(c-1)(c+1)

mà n(n-1)(n+1) luôn chia hết cho 6 với mọi số tự nhiên n

=>a^3+b^3+c^3 chia hết cho 6 (a+b+c chia hết cho 6)

19 tháng 8 2015

a, S= 2+2^2+2^3+....+2^2001+2^2002

      = (2+2^2)+(2^3+2^4)+...+(2^2001+2^2002)

      = (2+2^2)+2^2.(2+2^2)+...+2^2000.(2+2^2)

     = (2+2^2). (1+2^2+...+2^2000)

      = 6. (1+2^2+...+2^2000) chia hết cho 6 (ĐPCM)

Làm bạn với mình đi!

7 tháng 8 2015

bạn biết rồi còn hỏi người khác làm chi???????????

7 tháng 8 2015

a) đặt a=3k(k thuộc z)

ta có: a^2=(3k)^2=9K^2

=>a^2 chia hết cho 3

b)n^2+25-10n=(n-5)^2

=>(n-5)^2 là số chính phương

mặt khác 2006 ko phải là số chính phương nên ko tồn tại số nguyên n

3 tháng 2 2016

Bạn ghi đề nhớ để dấu cho đúng nhé.

\(1.\) Cho  \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)  \(\left(1\right)\)

\(CMR:\)  \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)

                                     \(----------------------\)

Ta có:

Từ  \(\left(1\right)\)  \(\Rightarrow\)  \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)  

              \(\Leftrightarrow\)  \(\frac{a^2}{b+c}+\frac{ab}{c+a}+\frac{ca}{a+b}+\frac{ab}{b+c}+\frac{b^2}{c+a}+\frac{bc}{a+b}+\frac{ca}{b+c}+\frac{bc}{c+a}+\frac{c^2}{a+b}=a+b+c\)

              \(\Leftrightarrow\)  \(\frac{a^2}{b+c}+\left(\frac{ab}{b+c}+\frac{ca}{b+c}\right)+\frac{b^2}{c+a}+\left(\frac{ab}{c+a}+\frac{bc}{c+a}\right)+\frac{c^2}{a+b}+\left(\frac{ca}{a+b}+\frac{bc}{a+b}\right)=a+b+c\)

              \(\Leftrightarrow\)  \(\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)

              \(\Leftrightarrow\) \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)  \(\left(đpcm\right)\)