loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:

Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz

ta có: BD//Ax

=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)

=>\(\hat{ABD}=180^0-125^0=55^0\)

Ta có: BD//Cz

=>\(\hat{DBC}+\hat{BCz}=180^0\) (hai góc trong cùng phía)

=>\(\hat{DBC}=180^0-130^0=50^0\)

Ta có: tia BD nằm giữa hai tia BA và BC

=>\(\hat{ABC}=\hat{DBA}+\hat{DBC}\)

=>\(\hat{ABC}=55^0+50^0=105^0\)

Bài 3:

Ax//yy'

=>\(\hat{xAB}=\hat{yBA}\) (hai góc so le trong)

=>\(\hat{yBA}=50^0\)

Cz//yy'

=>\(\hat{yBC}=\hat{zCB}\) (hai góc so le trong)

=>\(\hat{yBC}=40^0\)

Ta có: tia By nằm giữa hai tia BA và BC

=>\(\hat{ABC}=\hat{yBA}+\hat{yBC}=40^0+50^0=90^0\)

Bài 4:

Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz

BD//Ax

=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)

=>\(\hat{ABD}=180^0-110^0=70^0\)

ta có; tia BD nằm giữa hai tia BA và BC

=>\(\hat{DBA}+\hat{DBC}=\hat{ABC}\)

=>\(\hat{DBC}=100^0-70^0=30^0\)

Ta có: \(\hat{DBC}=\hat{zCB}\left(=30^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//Cz

Ta có: BD//Ax

BD//Cz

Do đó: Ax//Cz



a: a//b

=>\(\hat{A_1}=\hat{B_3}\) (hai góc so le trong)

\(\hat{A_1}=65^0\)

nên \(\hat{B_3}=65^0\)

b: Ta có: \(\hat{B}_3+\hat{B_2}=180^0\) (hai góc kề bù)

=>\(\hat{B_2}=180^0-65^0=115^0\)

11 tháng 8

Giải:

a; \(\hat{A_1}\) = \(65^0\) (gt)

\(\hat{A_1}\) = \(\hat{A_3}\) = 65\(^0\)(đối đỉnh)

\(\hat{A_3}\) = \(\hat{B_3}\) = \(65^0\) (slt)

b; \(\hat{B_2}\) + \(\hat{B_3}\) = 180\(^0\) (hai góc kề bù)

\(\hat{B_2}\) = 180\(^0\) - \(\hat{B_3}\)

\(\hat{B_2}\) = 180\(^0\) - 65\(^0\) = 115\(^0\)

Vậy a; \(\hat{B}_3\) = 65\(^0\)

b; \(\hat{B_2}\) = 115\(^0\)







Bài 1:

1: xx'⊥AD

yy'⊥AD

Do đó: xx'//yy'

2:

Cách 1:

xx'//yy'

=>\(\hat{C_1}=\hat{x^{\prime}BC}\) (hai góc so le trong)

=>\(\hat{C_1}=70^0\)

Cách 2:

ta có: \(\hat{x^{\prime}BC}+\hat{xBC}=180^0\) (hai góc kề bù)

=>\(\hat{xBC}=180^0-70^0=110^0\)

Ta có: xx'//yy'

=>\(\hat{xBC}+\hat{C_1}=180^0\) (hai góc trong cùng phía)

=>\(\hat{C_1}=180^0-110^0=70^0\)

Bài 2:

a: \(\hat{ABC}=\hat{n^{\prime}CB}\left(=80^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên mm'//nn'

b: Cách 1:

ta có: \(\hat{xAm}+\hat{mAD}=180^0\) (hai góc kề bù)

=>\(\hat{mAD}=180^0-70^0=110^0\)

Ta có: AB//CD
=>\(\hat{mAD}=\hat{D_1}\) (hai góc so le trong)

=>\(\hat{D_1}=110^0\)

Cách 2:

Ta có: \(\hat{xAm}=\hat{BAD}\) (hai góc đối đỉnh)

\(\hat{xAm}=70^0\)

nên \(\hat{BAD}=70^0\)

Ta có: AB//CD

=>\(\hat{BAD}+\hat{D_1}=180^0\) (hai góc trong cùng phía)

=>\(\hat{D_1}=180^0-70^0=110^0\)

26 tháng 1 2024

loading... a) ∆ABC cân tại A

⇒ ∠ABC = ∠ACB

Mà ∠ACB = ∠ECN (đối đỉnh)

⇒ ∠ABC = ∠ECN

⇒ ∠DBM = ∠ECN

Xét hai tam giác vuông: ∆DBM và ∆ECN có:

BD = CE (gt)

∠DBM = ∠ECN (cmt)

⇒ ∆DBM = ∆ECN (cạnh góc vuông - góc nhọn kề)

⇒ DM = EN (hai cạnh tương ứng)

b) Do DM ⊥ BC (gt)

EN ⊥ BC (gt)

⇒ DM // EN

⇒ ∠DMI = ∠ENI (so le trong)

Xét hai tam giác vuông: ∆DMI và ∆ENI có:

DM = EN (cmt)

∠DMI = ∠ENI (cmt)

⇒ ∆DMI = ∆ENI (cạnh góc vuông - góc nhọn kề)

⇒ MI = NI (hai cạnh tương ứng)

⇒ I là trung điểm của MN

⇒ BC cắt MN tại trung điểm I của MN

c) Do AH ⊥ BC nên AH là đường cao của ∆ABC

Mà ∆ABC cân tại A

AH cũng là đường phân giác của ∆ABC

⇒ ∠BAH = ∠CAH

⇒ ∠BAO = ∠CAO

Do ∆ABC cân tại A (gt)

⇒ AB = AC

Xét ∆OAB và ∆OAC có:

OA là cạnh chung

∠BAO = ∠CAO (cmt)

AB = AC (cmt)

⇒ ∆OAB = ∆OAC (c-g-c)

⇒ OB = OC (hai cạnh tương ứng)

Ta có:

I là trung điểm MN (cmt)

OI ⊥ MN (gt)

⇒ OI là đường trung trực của MN

⇒ OM = ON

Do ∆DBM = ∆ECN (cmt)

⇒ BM = CN (hai cạnh tương ứng)

Xét ∆OBM và ∆OCN có:

OB = OC (cmt)

OM = ON (cmt)

BM = CN (cmt)

⇒ ∆OBM = ∆OCN (c-c-c)

d) Do ∆OBM = ∆OCN (cmt)

⇒ ∠OBM = ∠OCN (hai góc tương ứng)

Do ∆OAB = ∆OAC (cmt)

⇒ ∠OBA = ∠OCA (hai góc tương ứng)

⇒ ∠OBM = ∠OCA

Mà ∠OBM = ∠OCN (cmt)

⇒ ∠OCN = ∠OCA

Mà ∠OCN + ∠OCA = 180⁰ (kề bù)

⇒ ∠OCN = ∠OCA = 180⁰ : 2 = 90⁰

⇒ OC ⊥ AC

26 tháng 1 2024

a) ∆ABC cân tại A

⇒ ∠ABC = ∠ACB

Mà ∠ACB = ∠ECN (đối đỉnh)

⇒ ∠ABC = ∠ECN

⇒ ∠DBM = ∠ECN

Xét hai tam giác vuông: ∆DBM và ∆ECN có:

BD = CE (gt)

∠DBM = ∠ECN (cmt)

⇒ ∆DBM = ∆ECN (cạnh góc vuông - góc nhọn kề)

⇒ DM = EN (hai cạnh tương ứng)

b) Do DM ⊥ BC (gt)

EN ⊥ BC (gt)

⇒ DM // EN

⇒ ∠DMI = ∠ENI (so le trong)

Xét hai tam giác vuông: ∆DMI và ∆ENI có:

DM = EN (cmt)

∠DMI = ∠ENI (cmt)

⇒ ∆DMI = ∆ENI (cạnh góc vuông - góc nhọn kề)

⇒ MI = NI (hai cạnh tương ứng)

⇒ I là trung điểm của MN

⇒ BC cắt MN tại trung điểm I của MN

c) Do AH ⊥ BC nên AH là đường cao của ∆ABC

Mà ∆ABC cân tại A

AH cũng là đường phân giác của ∆ABC

⇒ ∠BAH = ∠CAH

⇒ ∠BAO = ∠CAO

Do ∆ABC cân tại A (gt)

⇒ AB = AC

Xét ∆OAB và ∆OAC có:

OA là cạnh chung

∠BAO = ∠CAO (cmt)

AB = AC (cmt)

⇒ ∆OAB = ∆OAC (c-g-c)

⇒ OB = OC (hai cạnh tương ứng)

Ta có:

I là trung điểm MN (cmt)

OI ⊥ MN (gt)

⇒ OI là đường trung trực của MN

⇒ OM = ON

Do ∆DBM = ∆ECN (cmt)

⇒ BM = CN (hai cạnh tương ứng)

Xét ∆OBM và ∆OCN có:

OB = OC (cmt)

OM = ON (cmt)

BM = CN (cmt)

⇒ ∆OBM = ∆OCN (c-c-c)

d) Do ∆OBM = ∆OCN (cmt)

⇒ ∠OBM = ∠OCN (hai góc tương ứng)

Do ∆OAB = ∆OAC (cmt)

⇒ ∠OBA = ∠OCA (hai góc tương ứng)

⇒ ∠OBM = ∠OCA

Mà ∠OBM = ∠OCN (cmt)

⇒ ∠OCN = ∠OCA

Mà ∠OCN + ∠OCA = 180⁰ (kề bù)

⇒ ∠OCN = ∠OCA = 180⁰ : 2 = 90⁰

⇒ OC ⊥ AC

26 tháng 1 2024

loading... a) ∆ABC cân tại A

⇒ ∠ABC = ∠ACB

Mà ∠ACB = ∠ECN (đối đỉnh)

⇒ ∠ABC = ∠ECN

⇒ ∠DBM = ∠ECN

Xét hai tam giác vuông: ∆DBM và ∆ECN có:

BD = CE (gt)

∠DBM = ∠ECN (cmt)

⇒ ∆DBM = ∆ECN (cạnh góc vuông - góc nhọn kề)

⇒ DM = EN (hai cạnh tương ứng)

b) Do DM ⊥ BC (gt)

EN ⊥ BC (gt)

⇒ DM // EN

⇒ ∠DMI = ∠ENI (so le trong)

Xét hai tam giác vuông: ∆DMI và ∆ENI có:

DM = EN (cmt)

∠DMI = ∠ENI (cmt)

⇒ ∆DMI = ∆ENI (cạnh góc vuông - góc nhọn kề)

⇒ MI = NI (hai cạnh tương ứng)

⇒ I là trung điểm của MN

⇒ BC cắt MN tại trung điểm I của MN

c) Do AH ⊥ BC nên AH là đường cao của ∆ABC

Mà ∆ABC cân tại A

AH cũng là đường phân giác của ∆ABC

⇒ ∠BAH = ∠CAH

⇒ ∠BAO = ∠CAO

Do ∆ABC cân tại A (gt)

⇒ AB = AC

Xét ∆OAB và ∆OAC có:

OA là cạnh chung

∠BAO = ∠CAO (cmt)

AB = AC (cmt)

⇒ ∆OAB = ∆OAC (c-g-c)

⇒ OB = OC (hai cạnh tương ứng)

Ta có:

I là trung điểm MN (cmt)

OI ⊥ MN (gt)

⇒ OI là đường trung trực của MN

⇒ OM = ON

Do ∆DBM = ∆ECN (cmt)

⇒ BM = CN (hai cạnh tương ứng)

Xét ∆OBM và ∆OCN có:

OB = OC (cmt)

OM = ON (cmt)

BM = CN (cmt)

⇒ ∆OBM = ∆OCN (c-c-c)

d) Do ∆OBM = ∆OCN (cmt)

⇒ ∠OBM = ∠OCN (hai góc tương ứng)

Do ∆OAB = ∆OAC (cmt)

⇒ ∠OBA = ∠OCA (hai góc tương ứng)

⇒ ∠OBM = ∠OCA

Mà ∠OBM = ∠OCN (cmt)

⇒ ∠OCN = ∠OCA

Mà ∠OCN + ∠OCA = 180⁰ (kề bù)

⇒ ∠OCN = ∠OCA = 180⁰ : 2 = 90⁰

⇒ OC ⊥ AC

AH
Akai Haruma
Giáo viên
26 tháng 1 2024

Lời giải:
Trên $AC$ lấy $E$ sao cho $AB=AE$. Xét tam giác $ABD$ và $AED$ có:

$\widehat{BAD}=\widehat{EAD}$ (do $AD$ là tia phân giác $\widehat{A}$)

$AD$ chung

$AB=AE$

$\Rightarrow \triangle ABD=\triangle AED$ (c.g.c)

$\Rightarrow BD=DE(1)$ và $\widehat{ABD}=\widehat{AED}$

Có:

$\widehat{DEC}=180^0-\widehat{AED}=180^0-\widehat{ABD}=\widehat{ECD}+\widehat{BAC}> \widehat{ECD}$

$\Rightarrow DC> DE(2)$

Từ $(1); (2)\Rightarrow DC> DB$

AH
Akai Haruma
Giáo viên
26 tháng 1 2024

Hình vẽ:

11 tháng 1 2024

          \(\widehat{M_1}\) = \(\widehat{M_3}\) (hai góc đối đỉnh)

         \(\widehat{M_3}\) + \(\widehat{N_1}\) = 1800 (hai góc trong cùng phía)

         \(\widehat{M_3}\)         = 1800 - \(\widehat{N_1}\) 

         \(\widehat{M_3}\)         = 1800 - 500

         \(\widehat{M_3}\)        = 1300

        ⇒ \(\widehat{M_1}\) = 1300

Kết luận: \(\widehat{M_1}\) = 1300

           

9 giờ trước (20:43)

a: Ta có: \(\hat{A_2}+\hat{A_1}=180^0\) (hai góc kề bù)

=>\(\hat{A_2}=180^0-75^0=105^0\)

ta có: \(\hat{A_1}=\hat{A_3}\) (hai góc đối đỉnh)

\(\hat{A_1}=75^0\)

nên \(\hat{A_3}=75^0\)

Ta có: \(\hat{A_2}=\hat{A_4}\) (hai góc đối đỉnh)

\(\hat{A_2}=105^0\)

nên \(\hat{A_4}=105^0\)

Ta có: \(\hat{B_3}+\hat{B_4}=180^0\) (hai góc kề bù)

=>\(\hat{B_4}=180^0-120^0=60^0\)

ta có: \(\hat{B_3}=\hat{B_1}\) (hai góc đối đỉnh)

\(\hat{B_3}=120^0\)

nên \(\hat{B_1}=120^0\)

Ta có: \(\hat{B_4}=\hat{B_2}\) (hai góc đối đỉnh)

\(\hat{B_4}=60^0\)

nên \(\hat{B_2}=60^0\)

b: Ta có: \(\hat{xEF}=90^0\)

=>xx'⊥zz' tại E

=>\(\hat{xEz}=\hat{x^{\prime}Ez}=\hat{x^{\prime}EF}=90^0\)

Ta có: \(\hat{yFz^{\prime}}+\hat{y^{\prime}Fz^{\prime}}=180^0\) (hai góc kề bù)

=>\(\hat{yFz^{\prime}}=180^0-110^0=70^0\)

ta có: \(\hat{y^{\prime}Fz^{\prime}}=\hat{yFz}\) (hai góc đối đỉnh)

\(\hat{y^{\prime}Fz^{\prime}}=110^0\)

nên \(\hat{yFz}=110^0\)

Ta có: \(\hat{yFz^{\prime}}=\hat{y^{\prime}Fz}\) (hai góc đối đỉnh)

\(\hat{yFz^{\prime}}=70^0\)

nên \(\hat{y^{\prime}Fz}=70^0\)

NV
13 tháng 1 2024

Do tam giác MQE vuông tại E \(\Rightarrow\widehat{EMQ}+\widehat{EQM}=90^0\) (1)

Mà \(\widehat{EQM}\) là góc ngoài của tam giác NPQ, theo tính chất góc ngoài của tam giác:

\(\widehat{EQM}=\widehat{ENP}+\widehat{QPN}\) (2)

\(\left(1\right);\left(2\right)\Rightarrow\widehat{EMQ}+\widehat{ENP}+\widehat{QPN}=90^0\)

\(\Rightarrow\widehat{EMQ}+\widehat{ENP}+\widehat{QPN}-90^0=0\)