
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz
ta có: BD//Ax
=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)
=>\(\hat{ABD}=180^0-125^0=55^0\)
Ta có: BD//Cz
=>\(\hat{DBC}+\hat{BCz}=180^0\) (hai góc trong cùng phía)
=>\(\hat{DBC}=180^0-130^0=50^0\)
Ta có: tia BD nằm giữa hai tia BA và BC
=>\(\hat{ABC}=\hat{DBA}+\hat{DBC}\)
=>\(\hat{ABC}=55^0+50^0=105^0\)
Bài 3:
Ax//yy'
=>\(\hat{xAB}=\hat{yBA}\) (hai góc so le trong)
=>\(\hat{yBA}=50^0\)
Cz//yy'
=>\(\hat{yBC}=\hat{zCB}\) (hai góc so le trong)
=>\(\hat{yBC}=40^0\)
Ta có: tia By nằm giữa hai tia BA và BC
=>\(\hat{ABC}=\hat{yBA}+\hat{yBC}=40^0+50^0=90^0\)
Bài 4:
Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz
BD//Ax
=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)
=>\(\hat{ABD}=180^0-110^0=70^0\)
ta có; tia BD nằm giữa hai tia BA và BC
=>\(\hat{DBA}+\hat{DBC}=\hat{ABC}\)
=>\(\hat{DBC}=100^0-70^0=30^0\)
Ta có: \(\hat{DBC}=\hat{zCB}\left(=30^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên BD//Cz
Ta có: BD//Ax
BD//Cz
Do đó: Ax//Cz
a: a//b
=>\(\hat{A_1}=\hat{B_3}\) (hai góc so le trong)
mà \(\hat{A_1}=65^0\)
nên \(\hat{B_3}=65^0\)
b: Ta có: \(\hat{B}_3+\hat{B_2}=180^0\) (hai góc kề bù)
=>\(\hat{B_2}=180^0-65^0=115^0\)
Giải:
a; \(\hat{A_1}\) = \(65^0\) (gt)
\(\hat{A_1}\) = \(\hat{A_3}\) = 65\(^0\)(đối đỉnh)
\(\hat{A_3}\) = \(\hat{B_3}\) = \(65^0\) (slt)
b; \(\hat{B_2}\) + \(\hat{B_3}\) = 180\(^0\) (hai góc kề bù)
\(\hat{B_2}\) = 180\(^0\) - \(\hat{B_3}\)
\(\hat{B_2}\) = 180\(^0\) - 65\(^0\) = 115\(^0\)
Vậy a; \(\hat{B}_3\) = 65\(^0\)
b; \(\hat{B_2}\) = 115\(^0\)
Bài 1:
1: xx'⊥AD
yy'⊥AD
Do đó: xx'//yy'
2:
Cách 1:
xx'//yy'
=>\(\hat{C_1}=\hat{x^{\prime}BC}\) (hai góc so le trong)
=>\(\hat{C_1}=70^0\)
Cách 2:
ta có: \(\hat{x^{\prime}BC}+\hat{xBC}=180^0\) (hai góc kề bù)
=>\(\hat{xBC}=180^0-70^0=110^0\)
Ta có: xx'//yy'
=>\(\hat{xBC}+\hat{C_1}=180^0\) (hai góc trong cùng phía)
=>\(\hat{C_1}=180^0-110^0=70^0\)
Bài 2:
a: \(\hat{ABC}=\hat{n^{\prime}CB}\left(=80^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên mm'//nn'
b: Cách 1:
ta có: \(\hat{xAm}+\hat{mAD}=180^0\) (hai góc kề bù)
=>\(\hat{mAD}=180^0-70^0=110^0\)
Ta có: AB//CD
=>\(\hat{mAD}=\hat{D_1}\) (hai góc so le trong)
=>\(\hat{D_1}=110^0\)
Cách 2:
Ta có: \(\hat{xAm}=\hat{BAD}\) (hai góc đối đỉnh)
mà \(\hat{xAm}=70^0\)
nên \(\hat{BAD}=70^0\)
Ta có: AB//CD
=>\(\hat{BAD}+\hat{D_1}=180^0\) (hai góc trong cùng phía)
=>\(\hat{D_1}=180^0-70^0=110^0\)
a) ∆ABC cân tại A
⇒ ∠ABC = ∠ACB
Mà ∠ACB = ∠ECN (đối đỉnh)
⇒ ∠ABC = ∠ECN
⇒ ∠DBM = ∠ECN
Xét hai tam giác vuông: ∆DBM và ∆ECN có:
BD = CE (gt)
∠DBM = ∠ECN (cmt)
⇒ ∆DBM = ∆ECN (cạnh góc vuông - góc nhọn kề)
⇒ DM = EN (hai cạnh tương ứng)
b) Do DM ⊥ BC (gt)
EN ⊥ BC (gt)
⇒ DM // EN
⇒ ∠DMI = ∠ENI (so le trong)
Xét hai tam giác vuông: ∆DMI và ∆ENI có:
DM = EN (cmt)
∠DMI = ∠ENI (cmt)
⇒ ∆DMI = ∆ENI (cạnh góc vuông - góc nhọn kề)
⇒ MI = NI (hai cạnh tương ứng)
⇒ I là trung điểm của MN
⇒ BC cắt MN tại trung điểm I của MN
c) Do AH ⊥ BC nên AH là đường cao của ∆ABC
Mà ∆ABC cân tại A
AH cũng là đường phân giác của ∆ABC
⇒ ∠BAH = ∠CAH
⇒ ∠BAO = ∠CAO
Do ∆ABC cân tại A (gt)
⇒ AB = AC
Xét ∆OAB và ∆OAC có:
OA là cạnh chung
∠BAO = ∠CAO (cmt)
AB = AC (cmt)
⇒ ∆OAB = ∆OAC (c-g-c)
⇒ OB = OC (hai cạnh tương ứng)
Ta có:
I là trung điểm MN (cmt)
OI ⊥ MN (gt)
⇒ OI là đường trung trực của MN
⇒ OM = ON
Do ∆DBM = ∆ECN (cmt)
⇒ BM = CN (hai cạnh tương ứng)
Xét ∆OBM và ∆OCN có:
OB = OC (cmt)
OM = ON (cmt)
BM = CN (cmt)
⇒ ∆OBM = ∆OCN (c-c-c)
d) Do ∆OBM = ∆OCN (cmt)
⇒ ∠OBM = ∠OCN (hai góc tương ứng)
Do ∆OAB = ∆OAC (cmt)
⇒ ∠OBA = ∠OCA (hai góc tương ứng)
⇒ ∠OBM = ∠OCA
Mà ∠OBM = ∠OCN (cmt)
⇒ ∠OCN = ∠OCA
Mà ∠OCN + ∠OCA = 180⁰ (kề bù)
⇒ ∠OCN = ∠OCA = 180⁰ : 2 = 90⁰
⇒ OC ⊥ AC
a) ∆ABC cân tại A
⇒ ∠ABC = ∠ACB
Mà ∠ACB = ∠ECN (đối đỉnh)
⇒ ∠ABC = ∠ECN
⇒ ∠DBM = ∠ECN
Xét hai tam giác vuông: ∆DBM và ∆ECN có:
BD = CE (gt)
∠DBM = ∠ECN (cmt)
⇒ ∆DBM = ∆ECN (cạnh góc vuông - góc nhọn kề)
⇒ DM = EN (hai cạnh tương ứng)
b) Do DM ⊥ BC (gt)
EN ⊥ BC (gt)
⇒ DM // EN
⇒ ∠DMI = ∠ENI (so le trong)
Xét hai tam giác vuông: ∆DMI và ∆ENI có:
DM = EN (cmt)
∠DMI = ∠ENI (cmt)
⇒ ∆DMI = ∆ENI (cạnh góc vuông - góc nhọn kề)
⇒ MI = NI (hai cạnh tương ứng)
⇒ I là trung điểm của MN
⇒ BC cắt MN tại trung điểm I của MN
c) Do AH ⊥ BC nên AH là đường cao của ∆ABC
Mà ∆ABC cân tại A
AH cũng là đường phân giác của ∆ABC
⇒ ∠BAH = ∠CAH
⇒ ∠BAO = ∠CAO
Do ∆ABC cân tại A (gt)
⇒ AB = AC
Xét ∆OAB và ∆OAC có:
OA là cạnh chung
∠BAO = ∠CAO (cmt)
AB = AC (cmt)
⇒ ∆OAB = ∆OAC (c-g-c)
⇒ OB = OC (hai cạnh tương ứng)
Ta có:
I là trung điểm MN (cmt)
OI ⊥ MN (gt)
⇒ OI là đường trung trực của MN
⇒ OM = ON
Do ∆DBM = ∆ECN (cmt)
⇒ BM = CN (hai cạnh tương ứng)
Xét ∆OBM và ∆OCN có:
OB = OC (cmt)
OM = ON (cmt)
BM = CN (cmt)
⇒ ∆OBM = ∆OCN (c-c-c)
d) Do ∆OBM = ∆OCN (cmt)
⇒ ∠OBM = ∠OCN (hai góc tương ứng)
Do ∆OAB = ∆OAC (cmt)
⇒ ∠OBA = ∠OCA (hai góc tương ứng)
⇒ ∠OBM = ∠OCA
Mà ∠OBM = ∠OCN (cmt)
⇒ ∠OCN = ∠OCA
Mà ∠OCN + ∠OCA = 180⁰ (kề bù)
⇒ ∠OCN = ∠OCA = 180⁰ : 2 = 90⁰
⇒ OC ⊥ AC
a) ∆ABC cân tại A
⇒ ∠ABC = ∠ACB
Mà ∠ACB = ∠ECN (đối đỉnh)
⇒ ∠ABC = ∠ECN
⇒ ∠DBM = ∠ECN
Xét hai tam giác vuông: ∆DBM và ∆ECN có:
BD = CE (gt)
∠DBM = ∠ECN (cmt)
⇒ ∆DBM = ∆ECN (cạnh góc vuông - góc nhọn kề)
⇒ DM = EN (hai cạnh tương ứng)
b) Do DM ⊥ BC (gt)
EN ⊥ BC (gt)
⇒ DM // EN
⇒ ∠DMI = ∠ENI (so le trong)
Xét hai tam giác vuông: ∆DMI và ∆ENI có:
DM = EN (cmt)
∠DMI = ∠ENI (cmt)
⇒ ∆DMI = ∆ENI (cạnh góc vuông - góc nhọn kề)
⇒ MI = NI (hai cạnh tương ứng)
⇒ I là trung điểm của MN
⇒ BC cắt MN tại trung điểm I của MN
c) Do AH ⊥ BC nên AH là đường cao của ∆ABC
Mà ∆ABC cân tại A
AH cũng là đường phân giác của ∆ABC
⇒ ∠BAH = ∠CAH
⇒ ∠BAO = ∠CAO
Do ∆ABC cân tại A (gt)
⇒ AB = AC
Xét ∆OAB và ∆OAC có:
OA là cạnh chung
∠BAO = ∠CAO (cmt)
AB = AC (cmt)
⇒ ∆OAB = ∆OAC (c-g-c)
⇒ OB = OC (hai cạnh tương ứng)
Ta có:
I là trung điểm MN (cmt)
OI ⊥ MN (gt)
⇒ OI là đường trung trực của MN
⇒ OM = ON
Do ∆DBM = ∆ECN (cmt)
⇒ BM = CN (hai cạnh tương ứng)
Xét ∆OBM và ∆OCN có:
OB = OC (cmt)
OM = ON (cmt)
BM = CN (cmt)
⇒ ∆OBM = ∆OCN (c-c-c)
d) Do ∆OBM = ∆OCN (cmt)
⇒ ∠OBM = ∠OCN (hai góc tương ứng)
Do ∆OAB = ∆OAC (cmt)
⇒ ∠OBA = ∠OCA (hai góc tương ứng)
⇒ ∠OBM = ∠OCA
Mà ∠OBM = ∠OCN (cmt)
⇒ ∠OCN = ∠OCA
Mà ∠OCN + ∠OCA = 180⁰ (kề bù)
⇒ ∠OCN = ∠OCA = 180⁰ : 2 = 90⁰
⇒ OC ⊥ AC
Lời giải:
Trên $AC$ lấy $E$ sao cho $AB=AE$. Xét tam giác $ABD$ và $AED$ có:
$\widehat{BAD}=\widehat{EAD}$ (do $AD$ là tia phân giác $\widehat{A}$)
$AD$ chung
$AB=AE$
$\Rightarrow \triangle ABD=\triangle AED$ (c.g.c)
$\Rightarrow BD=DE(1)$ và $\widehat{ABD}=\widehat{AED}$
Có:
$\widehat{DEC}=180^0-\widehat{AED}=180^0-\widehat{ABD}=\widehat{ECD}+\widehat{BAC}> \widehat{ECD}$
$\Rightarrow DC> DE(2)$
Từ $(1); (2)\Rightarrow DC> DB$
\(\widehat{M_1}\) = \(\widehat{M_3}\) (hai góc đối đỉnh)
\(\widehat{M_3}\) + \(\widehat{N_1}\) = 1800 (hai góc trong cùng phía)
\(\widehat{M_3}\) = 1800 - \(\widehat{N_1}\)
\(\widehat{M_3}\) = 1800 - 500
\(\widehat{M_3}\) = 1300
⇒ \(\widehat{M_1}\) = 1300
Kết luận: \(\widehat{M_1}\) = 1300
a: Ta có: \(\hat{A_2}+\hat{A_1}=180^0\) (hai góc kề bù)
=>\(\hat{A_2}=180^0-75^0=105^0\)
ta có: \(\hat{A_1}=\hat{A_3}\) (hai góc đối đỉnh)
mà \(\hat{A_1}=75^0\)
nên \(\hat{A_3}=75^0\)
Ta có: \(\hat{A_2}=\hat{A_4}\) (hai góc đối đỉnh)
mà \(\hat{A_2}=105^0\)
nên \(\hat{A_4}=105^0\)
Ta có: \(\hat{B_3}+\hat{B_4}=180^0\) (hai góc kề bù)
=>\(\hat{B_4}=180^0-120^0=60^0\)
ta có: \(\hat{B_3}=\hat{B_1}\) (hai góc đối đỉnh)
mà \(\hat{B_3}=120^0\)
nên \(\hat{B_1}=120^0\)
Ta có: \(\hat{B_4}=\hat{B_2}\) (hai góc đối đỉnh)
mà \(\hat{B_4}=60^0\)
nên \(\hat{B_2}=60^0\)
b: Ta có: \(\hat{xEF}=90^0\)
=>xx'⊥zz' tại E
=>\(\hat{xEz}=\hat{x^{\prime}Ez}=\hat{x^{\prime}EF}=90^0\)
Ta có: \(\hat{yFz^{\prime}}+\hat{y^{\prime}Fz^{\prime}}=180^0\) (hai góc kề bù)
=>\(\hat{yFz^{\prime}}=180^0-110^0=70^0\)
ta có: \(\hat{y^{\prime}Fz^{\prime}}=\hat{yFz}\) (hai góc đối đỉnh)
mà \(\hat{y^{\prime}Fz^{\prime}}=110^0\)
nên \(\hat{yFz}=110^0\)
Ta có: \(\hat{yFz^{\prime}}=\hat{y^{\prime}Fz}\) (hai góc đối đỉnh)
mà \(\hat{yFz^{\prime}}=70^0\)
nên \(\hat{y^{\prime}Fz}=70^0\)
Do tam giác MQE vuông tại E \(\Rightarrow\widehat{EMQ}+\widehat{EQM}=90^0\) (1)
Mà \(\widehat{EQM}\) là góc ngoài của tam giác NPQ, theo tính chất góc ngoài của tam giác:
\(\widehat{EQM}=\widehat{ENP}+\widehat{QPN}\) (2)
\(\left(1\right);\left(2\right)\Rightarrow\widehat{EMQ}+\widehat{ENP}+\widehat{QPN}=90^0\)
\(\Rightarrow\widehat{EMQ}+\widehat{ENP}+\widehat{QPN}-90^0=0\)