K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2015

b)|x^2+2x| + |y^2-9| = 0 
|x^2+2x| > hoặc =0

|y^2-9|   > hoặc =0
x^2+2x=0 và y^2-9=0
suy ra (x;y)=(0;3)(0;-3)(-2;3)(-2;-3)

4 tháng 3 2015

bài này lớp 6 như em làm được

22 tháng 9 2016

bài này mik ko giải đc nhưng đáp án thì bik

\(-y^2-\left(-2x-6\right)y-5x^2-2x-1< 0\)

22 tháng 9 2016

Không có cặp nào cả vì (2x+1/2)^2 + (x-y)^2 + 3/4 luôn > 0 với mọi x, y 

26 tháng 9 2015

(x3-4x)2+ 3x2.Iy-3I=0

ta thấy (x3-4x)2  luôn lớn hơn hoặc bằng 0

            3x2.Iy-3I luôn lớn hơn hoặc bằng 0

vậy để (x3-4x)2+ 3x2.Iy-3I = 0 thì cả hai số hạng (x3-4x)2 và 3x2.Iy-3I  phải cùng bằng 0

+)  (x3-4x)=0 

,<=> x3-4x=0  <=>x( x2-4)=0 

<=> x = 0 , x = -2 và x = 2

+) 3x2.Iy-3I = 0 

<=> x = 0 hoặc y-3 = 0  <=> y = 3

vậy các cặp (x; y) thỏa mãn là: (0;3)  ;  (-2;3)  ; (2;3)

 

 

26 tháng 9 2015

Hỏi tổng thống Brack Obama trả lời cho ?

1 tháng 9 2016

ek cu hay qua do 

                      n.minh

 

AH
Akai Haruma
Giáo viên
19 tháng 3 2022

1.

PT $\Leftrightarrow 4x^2+4x+1=y^3+y^2+y+1$
$\Leftrightarrow (2x+1)^2=(y^2+1)(y+1)$
Gọi $d=(y^2+1, y+1)$
$\Rightarrow y^2+1\vdots d; y+1\vdots d$

$\Rightarrow y(y+1)-(y^2+1)\vdots d$ hay $y-1\vdots d$

$\Rightarrow (y+1)-(y-1)\vdots d\Rightarrow 2\vdots d$

$\Rightarrow d=1,2$

Nếu $d=2$ thfi $(2x+1)^2\vdots 2$ (vô lý do $2x+1$ lẻ)

$\Rightarrow d=1$

Tức là $(y^2+1, y+1)=1$. Mà tích của chúng là 1 scp nên mỗi số
 $y^2+1, y+1$ cũng là scp

Đặt $y^2+1=a^2; y+1=b^2$
$\Rightarrow (b^2-1)^2+1=a^2$

$\Leftrightarrow 1=a^2-(b^2-1)^2=(a-b^2+1)(a+b^2-1)$

$\Rightarrow a-b^2+1=a+b^2+1=1$ hoặc $a-b^2+1=a+b^2+1=-1$
Cả 2 TH đều suy ra $y=0$

$\Rightarrow 4x^2+4x=0\Rightarrow x=0$ hoặc $x=-1$

 

AH
Akai Haruma
Giáo viên
19 tháng 3 2022

2.

$x^4+2x^2=y^3$

$\Leftrightarrow (x^2+1)^2=y^3+1=(y+1)(y^2-y+1)$

Đặt $d=(y+1, y^2-y+1)$

$\Rightarrow y+1\vdots d; y^2-y+1\vdots d$

$\Rightarrow (y+1)^2-(y^2-y+1)\vdots d$

$\Rightarrow 3y\vdots d$

Nếu $d\vdots 3$ thì $x^2+1\vdots 3$. Điều này vô lý do 1 scp khi chia 3 dư 0 hoặc 1,

$\Rightarrow x^2+1$ khi chia cho $3$ dư $2$ hoặc $1$ (tức là không chia hết cho 3)

Do đó $d$ và $3$ nguyên tố cùng nhau. Khi đó từ $3y\vdots d$

$\Rightarrow y\vdots d$

Kết hợp với $y+1\vdots d\Rightarrow 1\vdots d\Rightarrow d=1$

$\Rightarrow (y+1, y^2-y+1)=1$. Mà tích của chúng là scp nên mỗi số
 $y+1, y^2-y+1$ cũng là scp

Đặt $y+1=a^2; y^2-y+1=b^2$ với $a,b\in\mathbb{N}$

Có:

$y^2-y+1=b^2$

$\Leftrightarrow (2y-1)^2+3=(2b)^2$

$\Leftrightarrow 3=(2b-2y+1)(2b+2y-1)$
Đây là dạng pt tích đơn giản và ta tìm được $y=0$ hoặc $y=1$

Thay vô pt ban đầu thì có cặp $(x,y)=(0,0)$

AH
Akai Haruma
Giáo viên
19 tháng 3 2022

Bài đã đăng rồi thì bạn không nên đăng lặp lại nữa, tránh gây loãng box toán.

20 tháng 11 2016

(2x - 3)2 + |y| = 1

\(\Rightarrow\left(2x-3\right)\le1\)

Do x nguyên nên (2x - 3)2 ϵ N mà (2x - 3)2 lẻ và \(0\le\left(2x-3\right)^2\le1\)

nên \(\begin{cases}\left|y\right|=0\\\left(2x-3\right)^2=1\end{cases}\)\(\Rightarrow\begin{cases}y=0\\2x-3\in\left\{1;-1\right\}\end{cases}\)\(\Rightarrow\begin{cases}y=0\\2x\in\left\{4;2\right\}\end{cases}\)\(\Rightarrow\begin{cases}y=0\\x\in\left\{2;1\right\}\end{cases}\)

Vậy có 2 cặp giá trị (x;y) thỏa mãn đề bài là (2;0) và (1;0)

22 tháng 11 2016

2 cặp