\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

CMR \...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{ab+bc+ca}{abc}=0\Rightarrow ab+bc+ca=0\)

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Rightarrow1^2=a^2+b^2+c^2+2.0\Rightarrow a^2+b^2+c^2=1\)

9 tháng 12 2018

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}=0\Rightarrow ab+bc+ac=0\left(abc\ne0\right)\)

vì \(a+b+c=1\Rightarrow\left(a+b+c\right)^2=1^2=1\)

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2.\left(ab+bc+ac\right)=a^2+b^2+c^2=1\Rightarrowđpcm\)

6 tháng 10 2017

Áp dụng tỉ dãy số bằng nhau. Ta có:

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\Leftrightarrow\frac{1+1+1}{a+b+c}=1\)

\(\Rightarrow a=b=c\)

\(\Rightarrow\frac{a}{b}\Leftrightarrow1-1\Leftrightarrow0\)

\(\Rightarrow PT=\frac{a-c}{c-b}=\frac{\left(a-c\right)^0}{\left(c-b\right)^0}=0\)

Vậy dấu = xảy ra khi a - c = a               , c - b = b

Ta có ĐPCM

Ps: Chả biết đúng hay không nữa

29 tháng 12 2020

như này mới đúng nè 

ta có\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{c}.2\)

\(\Rightarrow\frac{b}{ab}+\frac{a}{ba}=\frac{2}{c}\)

\(\Rightarrow\frac{b+a}{ab}=\frac{2}{c}\)

\(\Rightarrow\left(b+a\right)c=2ab\)

\(\Rightarrow cb+ca=ab+ab\)

\(\Rightarrow ca-ab=ab-cb\)

\(\Rightarrow b\left(a-c\right)=a\left(c-b\right)\)

\(\Rightarrow\frac{a-c}{c-b}=\frac{a}{b}\)

2 tháng 5 2019

thì \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}???\)

2 tháng 5 2019

viết nốt đề bài : thì 1/a^2 + 1/b^2 + 1/c^2 = 2

Từ 1/a + 1/b + 1/c = 2 bình phương hai vế ta có: 
. . . (1/a + 1/b + 1/c)² = 2² 
=> 1/a² + 1/b² + 1/c² + 2(1/ab + 1/bc + 1/ ca) = 4 
=> 1/a² + 1/b² + 1/c² + 2(a + b + c)/abc = 4 (Quy đồng MTC= abc) 
=> 1/a² + 1/b² + 1/c² + 2abc/abc = 4 (Vì a + b + c = abc) 
=> 1/a² + 1/b² + 1/c² + 2 = 4 
=> 1/a² + 1/b² + 1/c² = 2 (Đpcm)

 

2 tháng 4 2019

Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}=0\)

\(\Leftrightarrow ab+bc+ac=0\)

Ta có

\(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ac\right)=1^2-0=1\) (ĐPCM)

15 tháng 12 2018

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow c=\frac{1}{\frac{1}{2a}+\frac{1}{2b}}=\frac{1}{\frac{2\left(a+b\right)}{4ab}}=\frac{4ab}{2\left(a+b\right)}=\frac{2ab}{a+b}\)

\(\frac{a-c}{c-b}=\frac{a-\frac{2ab}{a+b}}{\frac{2ab}{a+b}-b}=\frac{a\left(1-\frac{2b}{a+b}\right)}{b\left(\frac{2a}{a+b}-1\right)}=\frac{a\left(\frac{a-b}{a+b}\right)}{b\left(\frac{a-b}{a+b}\right)}=\frac{a}{b}\)

\(\RightarrowĐPCM\)

17 tháng 2 2019

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{c}=\frac{1}{2}.\frac{a+b}{ab}\)

\(\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\Rightarrow2ab=\left(a+b\right).c\)

\(\Rightarrow ab+ab=ac+bc\Rightarrow ab-bc=ac-ab\)

\(\Rightarrow b\left(a-c\right)=a\left(c-b\right)\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)

17 tháng 2 2019

                        Giải

Ta có : \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Leftrightarrow\frac{1}{c}\div\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)

\(\Leftrightarrow\frac{1}{c}\times\frac{2}{1}=\frac{b}{ab}+\frac{a}{ab}\)

\(\Leftrightarrow\frac{2}{c}=\frac{b+a}{ab}\)

\(\Leftrightarrow2ab=c\left(b+a\right)\)

\(\Leftrightarrow ab+ab=bc+ac\)

\(\Leftrightarrow ac-ab=bc-ab\)

\(\Leftrightarrow a\left(c-b\right)=b\left(c-a\right)\)

Từ đẳng thức trên , ta áp dụng tính chất của tỉ lệ thức :

\(\frac{a}{b}=\frac{a-c}{c-b}\)

14 tháng 12 2016

a) \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{a+b}{2ab}\)

\(\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\Rightarrow ac+bc=2ab=ac-ab=ab-bc=a\left(c-b\right)=b\left(a-c\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)

b) \(\text{Để n nguyên thì P phải nguyên} \)

\(\Rightarrow\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=\frac{2\left(n-1\right)}{n-1}+\frac{1}{n-1}=2+\frac{1}{n-1}\Rightarrow\frac{1}{n-1}\in Z\)

=> n-1 là ước của 1

=> n-1={-1;1)

=> n={0;2)

14 tháng 12 2016

c) \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\)\(\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=0\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)