\(\frac{a^2}{a+2b}+\frac{4b^2}{2b+3c}+\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2022

Theo tc dãy tỉ số bằng nhau 

\(\frac{a-6b}{3c}=\frac{2b-9c}{a}=\frac{3c-3a}{2b}=\frac{a+2b+3c-6b-9c-3a}{3c+a+2b}\)

\(=\frac{a+2b+3a-3\left(2b+3c+a\right)}{3c+a+2b}=\frac{-2.72}{72}=-2\)

\(\Rightarrow a-6b=-6c;3c-3a=-4b\Leftrightarrow3a-4b=3c\)

ta có hệ \(\hept{\begin{cases}a-6b=-6c\\3a-4b=3c\end{cases}\Leftrightarrow\hept{\begin{cases}3a-18b=-18c\\3a-4b=3c\end{cases}}\Leftrightarrow\hept{\begin{cases}-14b=-21c\left(1\right)\\a=-6c+6b\left(2\right)\end{cases}}}\)

Theo giả thiết \(a+2b+3c=72\Rightarrow a=-2b-3c-72\)

\(\Rightarrow-2b-3c-72=-6c+6b\Leftrightarrow8b-3c+72=0\Leftrightarrow8b-3c=-72\)

(1) => \(\frac{b}{-21}=\frac{c}{-14}\)Theo tc dãy tỉ số bằng nhau 

\(\frac{b}{-21}=\frac{c}{-14}=\frac{8b-3c}{8\left(-21\right)-3\left(-14\right)}=-\frac{72}{-126}=\frac{4}{7}\Rightarrow b=-12;c=-8\)

Thay vào (2) vậy \(a=-6c+6b=-6\left(-8\right)+6\left(-12\right)=48-72=-24\)

22 tháng 2 2020

vì b2 = ac nên \(\frac{a}{b}=\frac{b}{c}\)

vì c2=bd nên \(\frac{c}{d}=\frac{b}{c}\)

suy ra \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)   (1)

suy ra \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{2b^3}{2c^3}=\frac{3c^3}{3d^3}=\frac{a^3+2b^3+3c^3}{b^3+2c^3+3d^3}\)(2)

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{2b}{2c}=\frac{3c}{3d}=\frac{a+2b+3c}{b+2c+3d}\)suy ra \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\left(\frac{a+2b+3c}{b+2c+3d}\right)^3\)(3)

Từ (1), (2) và (3) suy ra điều phải chứng minh

3 tháng 2 2020

1. 

Ta có : \(\frac{2bz-3cy}{a}=\frac{3cx-az}{2b}=\frac{ay-2bx}{3c}\)

\(\Rightarrow\frac{a.\left(2bz-3cy\right)}{a^2}=\frac{2b.\left(3cx-az\right)}{4b^2}=\frac{3c.\left(ay-2bx\right)}{9c^2}\)

\(\Rightarrow\frac{2abz-3acy}{a^2}=\frac{6bcx-2abz}{4b^2}=\frac{3acy-6bcx}{9c^2}\)

Áp dụng tính chất của dãy tỉ số bằng hau ta có :

 \(\frac{2abz-3acy}{a^2}=\frac{6bcx-2abz}{4b^2}=\frac{3acy-6bcx}{9c^2}\)

\(=\frac{2abz-3acy+6bcx-2abz+3acy-6bcx}{a^2+4b^2+9c^2}=0\)

\(\Rightarrow\hept{\begin{cases}\frac{2bz-3cy}{a}=0\\\frac{3cx-az}{2b}=0\\\frac{ay-2bx}{3c}=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}2bz-3cy=0\\3cx-az=0\\ay-2bx=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}2bz=3cy\\3cx=az\\ay=2bx\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{z}{3c}=\frac{y}{2b}\\\frac{x}{a}=\frac{z}{3c}\\\frac{y}{2b}=\frac{x}{a}\end{cases}}\Rightarrow\frac{x}{a}=\frac{y}{2b}=\frac{x}{3c}\left(đpcm\right)\)

Chúc bạn học tốt !!!

3 tháng 2 2020

1. Sửa lại dòng cuối 

\(\Rightarrow\frac{x}{a}=\frac{y}{2b}=\frac{z}{3c}\)