Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải bài toán:
Trong số 10 ngày mà Cheryl đưa ra, từ ngày 14 đến 19 hàng tháng, ngày 18 và 19 chỉ xuất hiện một lần. Nếu sinh nhật của cô ấy vào hai ngày này thì chắc chắn Bernard đã biết đáp án. (Loại ngày 19/5 và 18/6)
Nhưng tại sao Albert khẳng định Bernard không biết?
Nếu Cheryl nói với Albert tháng sinh của cô ấy là tháng 5 hoặc tháng 6 thì sinh nhật của Cheryl có thể là ngày 19/5 hoặc 18/6. Và Bernard sẽ biết đáp án. Nhưng Albert khẳng định Bernard không biết, có nghĩa là Cheryl nói với Albert tháng sinh của cô ấy là tháng 7 hoặc tháng 8. (Loại tiếp ngày 15/5, 16/5 và 17/6)
Ban đầu, Bernard không biết sinh nhật của Cheryl nhưng làm thế nào cậu ấy biết chỉ sau câu nói đầu tiên của Albert?
Trong số những ngày còn lại, từ ngày 15 đến 17 của tháng 7 hoặc tháng 8, ngày 14 xuất hiện hai lần.
Nếu Cheryl nói với Bernard sinh nhật của cô ấy vào ngày 14 thì cậu không thể biết đáp án. Nhưng Bernard biết, vậy ta loại tiếp ngày 14/7 và 14/8. Còn lại 3 ngày: 16/7, 15/8 và 17/8.
Sau câu nói của Bernard, Albert cũng biết đáp án. Nếu Cheryl nói với Albert sinh nhật của cô vào tháng 8 thì Albert không biết vì có đến hai ngày trong tháng 8.
Vì thế, sinh nhật của Cheryl là ngày 16/7.
Tui đăng kí thi anh :
Phan Tiến Nghĩa
Lớp 7 :>
Bài làm :
1. We have two postal deliveries a day.
2. He left the room without explaining
3. Playing tennis is one of his favorite activities
4. We started our trip on a beautiful sunning morning.
5. They left the house in a frightening mess.
6. He said “ Good morning” in a most friendly way.
7. There is no easy solution to this problem.
8. He always drives more carefully at night.
9. Does this arrangement suit you?
10. He is a very skillful carpenter.
Sports and games play an (1) important part in our lives. Everyone of us can (2) play a sport, or a game, or watch sports (3) events on TV or at the stadium. When you listen to the (4) radio early in the morning, you can always hear sports (5)new. When you open a newspaper, you will always find information about some (6) game, or an arle about your favorite kind of sport. Television (7) programmes about sport are also very (8) popular , and you can watch something interesting nearly every day. Stories about (9) famous men and women in the world of (10) sport are often very interesting.
Đây tài trên 2k5 SP , vậy thì tài trợ khoảng 50 => 70 SP nhé
_ [ Với quy định nhiều người tham gia nhea -v- ]
#Anh :33
Tiếng Anh: ( 15sp cho 1 người )
Fill in each blank with the appropriate forms of the word in bracket.
1. There is a collection of books on the shelf. (collect)
2. It is very inconvinient for people in remote areas to get to hospitals. (convenience)
3. He is very skillful with his hands. (skill)
4. It is said that water collected from the local streams is safe to drink. (safe)
5. I to eat healthy, so I eat a lot of fruits and vegetables every day. (health)
Theo AM - GM cho 3 số dương: \(\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge3\sqrt[3]{\frac{1}{a^2b^2c^2\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)(*)
Tiếp tục sử dụng AM - GM, ta được: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{8\left(a+b+c\right)^3}{27}\le\frac{8}{27}\)(do \(a+b+c\le1\))
và \(a^2b^2c^2\le\frac{\left(ab+bc+ca\right)^3}{27}\)
Từ đó suy ra \(a^2b^2c^2\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{8\left(ab+bc+ca\right)^3}{27^2}\)(**)
Từ (*) và (**) suy ra \(\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge\frac{27}{2\left(ab+bc+ca\right)}\)
Đến đây, ta cần chứng minh \(\frac{1}{a^2+b^2+c^2}+\frac{27}{2\left(ab+bc+ca\right)}\ge\frac{87}{2}\)(***)
Thật vậy, áp dụng bất đẳng thức Bunyakovsky dạng phân thức, ta được: \(\frac{1}{a^2+b^2+c^2}+\frac{27}{2\left(ab+bc+ca\right)}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{23}{2\left(ab+bc+ca\right)}\)\(\ge\frac{9}{\left(a+b+c\right)^2}+\frac{23}{2.\frac{\left(a+b+c\right)^2}{3}}\ge\frac{87}{2}\)*đúng theo (***)*
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)