
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt đa thức f(x) = ax2 +bx +c
Ta có: f(0) = 10
=> a.02 +b.0 +c = 10
=> c = 10.
Ta lại có: f(1) = 20 và f(3) = 58
\(\Rightarrow\left\{{}\begin{matrix}a.1^2+b.1+10=20\\a.3^2+b.3+10=58\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b+10=20\\9a+3b+10=58\end{matrix}\right.\)
Giải tiếp ta được a=3,b=7.
Vậy đa thức đó là f(x) = 3a2 + 7a + 10.

Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{16}{8}=2\)
Vậy, ta lại có:
\(\dfrac{x}{3}=2\)\(\Rightarrow\) x= 3.2=6
\(\dfrac{y}{5}=2\Rightarrow\) y= 2.5=10
Vậy x-= 6 và y=10
Tick mk nha bn!
Tìm x,y,z biết:
\(x+y=\dfrac{1}{2}\)
\(y+z=\dfrac{1}{3}\)
\(z+x=\dfrac{1}{4}\)
mong các bn giúp mik!

Ta có: \(\left\{{}\begin{matrix}x+y=\dfrac{1}{2}\left(1\right)\\y+z=\dfrac{1}{3}\left(2\right)\\z+x=\dfrac{1}{4}\left(3\right)\end{matrix}\right.\)
Cộng (1); (2); (3) vế theo vế ta được:
\(2\left(x+y+z\right)=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\)
=> \(2\left(x+y+z\right)=\dfrac{13}{12}\)
=> \(x+y+z=\dfrac{13}{24}\)
+) Mà \(x+y=\dfrac{1}{2}\) => \(z=\dfrac{13}{24}-\dfrac{1}{2}\) = \(\dfrac{1}{24}\)
+) Mà y + z = \(\dfrac{1}{3}\) => \(\left\{{}\begin{matrix}y=\dfrac{1}{3}-\dfrac{1}{24}\\x=\dfrac{13}{24}-\dfrac{1}{3}\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=\dfrac{7}{24}\\x=\dfrac{5}{24}\end{matrix}\right.\) (TM)
Vậy \(x=\dfrac{5}{24};y=\dfrac{7}{24};z=\dfrac{1}{24}\)
P/s: Bài này có nhiều cách giải lắm!
x + y=1/2
y + z=1/3
z + x=1/4
=> x + y + y + z + z + x = 1/2 + 1/3 + 1/4 = 13/12
hay: 2(x + y + z ) = 13/12
x + y + z = 13/12 :2
x + y + z = 13/24
x = 13/24 - 1/3 = 5/24
y = 13/24 - 1/4 = 7/24
z = 13/24 - 1/2 = 1/24
Vậy ...

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\)
1.
giả sử điều đó đúng thì:
\(c\left(b+a\right)=a\left(c+d\right)\\ bc+ca=ac+ad\Rightarrow bc+ca=ca+bc\left(đúng\right)\)
\(\Rightarrow\dfrac{a}{b+a}=\dfrac{c}{d+c}\)
2.
\(\dfrac{a-2b}{b}=\dfrac{c-2d}{d}\\ \dfrac{a-b}{b}-1=\dfrac{c-d}{d}-1\\ \dfrac{a-b}{b}=\dfrac{c-d}{d}\\ \left(a-b\right)d=\left(c-d\right)b\\ ad-bd=bc-bd\\ \Rightarrow ad-bd=ad-bd\left(đúng\right)\)
\(\Rightarrow\dfrac{a-2b}{b}=\dfrac{c-2d}{d}\) cũng đúng
1)
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)
\(\dfrac{a}{b+a}=\dfrac{c}{c+d}\Leftrightarrow a\left(c+d\right)=c\left(b+a\right)\)
\(\Leftrightarrow ac+ad=bc+ac\Leftrightarrow ad=bc\)
\(\Leftrightarrow\dfrac{a}{b+a}=\dfrac{c}{c+d}\)
2)
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{a}{b}-2=\dfrac{c}{d}-2\)
\(\Leftrightarrow\dfrac{a}{b}-\dfrac{2b}{b}=\dfrac{c}{d}-\dfrac{2d}{d}\)
\(\Leftrightarrow\dfrac{a-2b}{b}=\dfrac{c-2d}{d}\rightarrowđpcm\)

Ta có: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Leftrightarrow\dfrac{a^2}{b^2}=\dfrac{\left(a+b+c\right)^2}{\left(b+c+d\right)^2}\)
\(\Leftrightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{\left(a+b+c\right)^2}{\left(b+c+d\right)^2}\)
\(\Leftrightarrow\dfrac{a}{d}=\dfrac{\left(a+b+c\right)^2}{\left(b+c+d\right)^2}\left(đpcm\right)\)
Chúc bạn học tốt!

Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{5b-3c}{2}=\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5\left(3a-2b\right)+3\left(2c-5a\right)}{5.5+3.3}\)
\(=\frac{-10b+6c}{34}=\frac{-5b+3c}{17}\)
Do đó, \(\frac{5b-3c}{2}=\frac{-5b+3c}{17}\)
\(\Rightarrow5b-3c=0\Rightarrow b=\frac{3}{5}c;a=\frac{2}{5}c\)
Lại có \(a+b+c=-50\Rightarrow\frac{2}{5}c+\frac{3}{5}c+c=-50\Rightarrow c=-25\)
\(\Rightarrow\left[\begin{matrix}a=\frac{2}{5}c\Rightarrow a=-10\\b=\frac{3}{5}c\Rightarrow b=-15\end{matrix}\right.\)
Vậy...

b) Nếu các bạn chưa học tam giác cân thì làm như sau: VìΔBCD = ΔCBE cmt ⇒CD = BE
= Xét ΔBOE,ΔCODcó: = BE = CD cmt = cmt ⇒ΔBOE = ΔCOD g − c − g ⇒OB= OC(hai cạnh tương ứng) ( ) ^ CDB ^ BEC ^ EDO ^ ODC ( ) ^ BEO ^ CDOHình bạn tự vẽ nha!
a) Vì \(\widehat{B}=\widehat{C}\left(gt\right)\)
Mà \(BD\) và \(CE\) là tia phân giác của \(\widehat{B}\) và \(\widehat{C}\) cắt nhau tại O.
=> \(\left\{{}\begin{matrix}\widehat{DBC}=\widehat{ECB}\\\widehat{DBE}=\widehat{ECD}\end{matrix}\right.\)
Xét 2 \(\Delta\) \(BCD\) và \(CBE\) có:
\(\widehat{BCD}=\widehat{CBE}\left(gt\right)\)
\(\widehat{DBC}=\widehat{ECB}\left(cmt\right)\)
Cạnh BC chung
=> \(\Delta BCD=\Delta CBE\left(g-c-g\right).\)
=> \(CD=BE\) (2 cạnh tương ứng)
b) Theo câu a) ta có \(\Delta BCD=\Delta CBE.\)
=> \(\widehat{ODC}=\widehat{OEB}\) (2 góc tương ứng)
Xét 2 \(\Delta\) \(OBE\) và \(OCD\) có:
\(\widehat{OEB}=\widehat{ODC}\left(cmt\right)\)
\(BE=CD\left(cmt\right)\)
\(\widehat{DBE}=\widehat{ECD}\left(cmt\right)\)
=> \(\Delta OBE=\Delta OCD\left(g-c-g\right).\)
=> \(OB=OC\) (2 cạnh tương ứng)
c) Xét 2 \(\Delta\) vuông \(OBK\) và \(OCH\) có:
\(\widehat{OKB}=\widehat{OHC}=90^0\left(gt\right)\)
\(OB=OC\left(cmt\right)\)
\(\widehat{DBE}=\widehat{ECD}\left(cmt\right)\)
=> \(\Delta OBK=\Delta OCH\) (cạnh huyền - góc nhọn)
=> \(OK=OH\) (2 cạnh tương ứng).
Chúc bạn học tốt!

hình bạn tự vẽ nha
a) \(\Delta ABC\) có \(\stackrel\frown{B}=\stackrel\frown{C}\) \(\Rightarrow\Delta ABC\)cân tại \(\stackrel\frown{A}\)(1)
vì BD là tia phân giác của \(\stackrel\frown{B}\)\(\Rightarrow\stackrel\frown{ABD=}\)\(\stackrel\frown{CBD}\)(2)
vì ce là phân giác của \(\stackrel\frown{C}\Rightarrow\stackrel\frown{ECB=\stackrel\frown{ECA}}\)(3)
từ (1),(2),(3) \(\Rightarrow\stackrel\frown{CBD}=\stackrel\frown{DBA}=\stackrel\frown{BCE}=\stackrel\frown{ECA}\)
xét tam giác BCD và tam giác CBE có:
\(\stackrel\frown{CBD}=\stackrel\frown{BCE}\)
\(\stackrel\frown{B}=\stackrel\frown{C}\)
BC chung
\(\Rightarrow\)\(\Delta BCD=\Delta CBE\left(ch-gn\right)\)
b) \(\Delta BOC\)có \(\stackrel\frown{OBC}=\stackrel\frown{OCB}\)\(\Rightarrow\Delta BOC\)cân tại O \(\Rightarrow OB=OC\)
c) xét \(\Delta AOB\)và \(\Delta AOC\)có
AO chung
AB=AC
\(\stackrel\frown{ABO}=\stackrel\frown{ACO}\)
\(\Rightarrow\Delta AOB=\Delta AOC\left(ch-gn\right)\)
\(\Rightarrow\stackrel\frown{BAO}=\stackrel\frown{CAO}\Rightarrow\stackrel\frown{OAD}=\stackrel\frown{OAK}\)
vì \(OH\perp AC\Rightarrow\stackrel\frown{OHA}=90^o\)
\(OK\perp AB\Rightarrow\stackrel\frown{OKA}=90^o\)
Xét \(\Delta OAK\)và \(\Delta OAH\)có:
\(\stackrel\frown{OKA}=\stackrel\frown{OHA}=90^o\)
\(\stackrel\frown{OAK}=\stackrel\frown{OAH}\)
OA chung
\(\Rightarrow\Delta OAK=\Delta OAH\left(ch-gn\right)\)
\(\Rightarrow OH=OK\)
nếu sai ở đâu mong bạn bỏ qua cho nha
Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!