Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tỉ số cơ năng
\(\frac{W_1}{W_2}=\frac{k_1A_1^2}{k_2A_2^2}=\frac{m_1\omega_1^2A_1^2}{m_2\omega_2^2A_2^2}=\frac{50.\left(5\pi\right)^21^2}{100.\pi^2.5^2}=\frac{1}{2}\)
Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)
Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)
+ \(\omega = \frac{2\pi}{T} = \frac{2\pi}{2} = \pi\) (rad/s)
+ Nhận xét: Trong 2s = 1T, vật đi quãng đường 4.A = 40 cm, \(\Rightarrow\) A=10cm.
+ t = 0, vật qua VTCB theo chiều dương \(\Rightarrow\left\{ \begin{array}{} x_0 = 0\ cm\\ v_0 >0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 0\ \\ \sin \varphi <0 \end{array} \right. \Rightarrow \varphi = -\frac{\pi}{2}\)
Vậy phương trình: \(x = 10cos(\pi t -\frac{\pi}{2})\) (cm)
Phương trình tổng quát: x = \(A\cos(\omega t+\varphi)\)
+ Tần số: f= 120/60 = 2 Hz \(\Rightarrow \omega = 2\pi f = 2\pi .2 = 4\pi\) (rad/s)
+ Biên độ: A = 40/4 = 10 (cm) (1 chu kì vật đi quãng đường là 4A)
t=0, vật có li độ dương, chiều hướng về VTCB, nên v0<0.
\(\Rightarrow\left\{ \begin{array}{} x_0 = 5\ cm\\ v_0 <0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 5/10=0,5\ \\ \sin \varphi > 0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)
Vậy phương trình: \(x=10\cos(4\pi t +\frac{\pi}{3})\)
Phương trình tổng quát: \(x = A\cos(\omega t +\varphi)\)
+ Quãng đường khi vật thực hiện 5 dao động: S = 5.4A = 100 cm \(\Rightarrow\) A = 5cm.
+ Tần số: f = 5/2 = 2,5 Hz \(\Rightarrow \omega = 2\pi f = 2\pi.2,5 = 5\pi \ (rad/s)\)
+ t= 0 khi vật có x0=5 nên vật đang ở biên độ dương \(\Rightarrow \varphi = 0\)
Vậy phương trình dao động: \(x=5\cos(5\pi t) \ (cm)\)
Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)
+ \(\omega = 2\pi f = 2\pi .10 = 20\pi \ (rad/s) \)
+ A = 4cm.
+ t = 0, vật qua x0 = A \(\Rightarrow\left\{ \begin{array}{} x_0 = 4\ cm\\ v_0 =0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 1\ cm\\ \sin \varphi = 0 \end{array} \right. \Rightarrow \varphi = 0\)
Vậy phương trình dao động: \(x = 4\cos(20\pi t) \ (cm)\)
Phương trình tổng quát: \(x= A cos(\omega t+\varphi)\)
+ Tần số góc: \(\omega = 2\pi/2 = \pi \ (rad/s)\)
+ t=0, vật qua VTCB theo chiều đương \(\Rightarrow\left\{ \begin{array}{} x_0 = 0\ cm\\ v_0 >0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 0\ cm\\ \sin \varphi <0 \end{array} \right. \Rightarrow \varphi = -\frac{\pi}{2}\)
Vậy phương trình dao động: \(x = 5\cos(\pi t - \frac{\pi}{2})\) (cm)
tại sao lại ra φ=\(\dfrac{-\pi}{2}\) làm cách nào vậy bạn???
Tốc độ trung bình của vật là \(v = \frac{\text{quãng đường đi được}}{t}\)
(chú ý là tốc độ trung bình khác với vận tốc trung bình vì vận tốc trung bình = \(\frac{x_{cuoi}-x_{dau}}{t}\))
Dùng đường tròn để tìm quãng đường và thời gian đi
4 -4 2 3 2 3 - M N a π/6 π/6 H K
Vật đi được từ điểm N (\(x = -2\sqrt{3}\) hường theo chiều dương của trục x) đến điểm M (\(x = 2\sqrt{3}\) hướng theo chiều dương của trục x) tức là ứng với cung \(\stackrel\frown{NaM}\)
Quãng đường đi được là: \(S = HK= 2\sqrt{3}+ 2\sqrt{3} = 4\sqrt{3}cm.\)
Thời gian đi \(t = \frac{\varphi}{\omega} = \frac{\pi/3+\pi/3}{8\pi} = \frac{1}{12}s.\)
Vận tốc trung bình là \(v = \frac{4\sqrt{3}}{1/12} = 48 \sqrt{3}cm/s.\)
Chọn đáp án. D
Làm sao biết được là pi/6 vậy ạ. C chỉ giúp mình được không ạ?
Cơ năng: \(W=\frac{1}{2}kA^2=\frac{1}{2}m\omega^2A^2\)
Suy ra: \(\frac{W_1}{W_2}=\frac{m_1\omega_1^2A_1^2}{m_2\omega_2^2A_2^2}=\frac{0,05.\left(5\pi\right)^2.0,01^2}{0,1.\left(\pi\right)^2.0,05^2}=\frac{1}{2}\)
Đáp án A