Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)
C=7+2^3(1+2+4)+2^6(1+2+4)
C=7(1+2^3+2^6) chia hết cho 7
tick ủng hộ nha!!!
\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)
\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)
b, tự tương
\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\) ( vì \(28a+28⋮7\) )
\(\Leftrightarrow30a+33⋮7\)
\(\Leftrightarrow3.\left(10a+11\right)⋮7\)
\(\Leftrightarrow10a+11⋮7\) ( vì \(\left(3;7\right)=1\) )
Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)
Câu b bn xem lại đề hộ mk chút nhé!
a) \(3^5+3^4+3^3\)
\(=3^3\cdot3^2+3^3\cdot3+3^3\cdot1\)
\(=3^3\left(3^2+3+1\right)\)
\(=3^3\cdot13⋮13\) (đpcm)
b) \(2^{10}-2^9+2^8-2^7\)
\(=2^7\cdot2^3-2^7\cdot2^2+2^7\cdot2-2^7\cdot1\)
\(=2^7\left(2^3-2^2+2-1\right)\)
\(=2^7\cdot5⋮5\) (đpcm)
=))
Ta có:
3+32+33+34+35...+396
=(3+32+33+34+35+36)+(37+38+39+310+311+312)+...+(391+392+393+394+395+396)
=(1+3+32+33+34+35).3+(1+3+32+33+34+35).37+...+(1+3+32+33+34+35).391
=(1+3+32+33+34+35).(3+37+...+391)
=1092.(3+37+...+391)
=7.156.(3+37+...+391) chia hết cho 7
Vậy 3+32+33+34+...+396 chia hết cho 7
\(P=1+3+3^2+...+3^7\)
\(=\left(1+3\right)+...+\left(3^6+3^7\right)\)
\(=1\left(1+3\right)+...+3^6\left(1+3\right)\)
\(=1\cdot4+...+3^6\cdot4\)
\(=4\cdot\left(1+...+3^6\right)⋮4\)
Đpcm
p=1+3+32+33+34+35+36+37
p=(1+3)+(32+33)+(34+35)+(36+37)
p=4.1+(32.1+32.3)+(34.1+34.3)+(36.1+36.3)
p=4.1+32(1+3)+34(1+3)+36(1+3)
p=4.1+32.4+34.4+36.4
p=4.(1+32+34+36)
vay P chia het cho 4